×

High-order structure-preserving algorithms for plasma hybrid models. (English) Zbl 07789305

Nielsen, Frank (ed.) et al., Geometric science of information. 6th international conference, GSI 2023, St. Malo, France, August 30 – September 1, 2023. Proceedings. Part II. Cham: Springer. Lect. Notes Comput. Sci. 14072, 263-271 (2023).
Summary: Wave-particle resonance plays a crucial role for the stability of burning plasma in magnetically confined fusion. We present provably stable algorithms for the accurate simulation of such (nonlinear) processes on long time scales. Our approach combines several recent advances in theoretical and numerical research: on the theoretical side, we rely on Hamiltonian fluid-kinetic hybrid models, largely based on the works of Tronci [37]. To achieve high-order discretization, we use finite element exterior calculus (FEEC) introduced by Arnold et al. [5] based on B-splines coupled with particle-in cell for the resonating particles. Last but not least, structure-preservation (in a sense to be defined more clearly in the text) is achieved by discretization of Poisson brackets, rather than PDEs - following the ideas of Kraus et al. [28]. These efforts culminate in the creation of the open-source software package STRUPHY (STRUcture-Preserving HYbrid codes) [1] which makes available to the scientific community a growing number of plasma hybrid codes, ready for use.
For the entire collection see [Zbl 1528.53002].

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI

References:

[1] https://pypi.org/project/struphy/
[2] https://w3.pppl.gov/ntcc/TORAY/G_EQDSK.pdf
[3] https://gitlab.mpcdf.mpg.de/gvec-group/gvec
[4] https://struphy.pages.mpcdf.de/struphy/index.html
[5] Arnold, D.; Falk, R.; Winther, R., Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., 47, 2, 281-354 (2010) · Zbl 1207.65134 · doi:10.1090/S0273-0979-10-01278-4
[6] Aydemir, AY, A unified Monte Carlo interpretation of particle simulations and applications to non-neutral plasmas, Phys. Plasmas, 1, 4, 822-831 (1994) · doi:10.1063/1.870740
[7] Belova, E., Denton, R., Chan, A.: Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal alfvén modes. J. Comput. Phys. (2), 324-336 · Zbl 0912.76048
[8] Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. CRC Press, Boca Raton (2018)
[9] Bottino, A., Global nonlinear electromagnetic simulations of tokamak turbulence, IEEE Trans. Plasma Sci., 38, 9, 2129-2135 (2010) · doi:10.1109/TPS.2010.2055583
[10] Briguglio, S.; Vlad, G.; Zonca, F.; Kar, C., Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal alfvén modes, Phys. Plasmas, 2, 10, 3711-3723 (1995) · doi:10.1063/1.871071
[11] Buffa, A.; Rivas, J.; Sangalli, G.; Vázquez, R., Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal., 49, 2, 818-844 (2011) · Zbl 1225.65100 · doi:10.1137/100786708
[12] Burby, JW; Tronci, C., Variational approach to low-frequency kinetic-MHD in the current coupling scheme, Plasma Phys. Control. Fusion, 59, 4, 045013 (2017) · doi:10.1088/1361-6587/aa5c5b
[13] Campos Pinto, M.; Kormann, K.; Sonnendrücker, E., Variational framework for structure-preserving electromagnetic particle-in-cell methods, J. Sci. Comput., 91, 2, 46 (2022) · Zbl 1494.35145 · doi:10.1007/s10915-022-01781-3
[14] Chen, G.; Chacón, L., An energy-and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm, Comput. Phys. Commun., 185, 10, 2391-2402 (2014) · Zbl 1360.78014 · doi:10.1016/j.cpc.2014.05.010
[15] Chen, G.; Chacón, L.; Barnes, DC, An energy-and charge-conserving, implicit, electrostatic particle-in-cell algorithm, J. Comput. Phys., 230, 18, 7018-7036 (2011) · Zbl 1237.78006 · doi:10.1016/j.jcp.2011.05.031
[16] Chen, L.; Zonca, F., Physics of alfvén waves and energetic particles in burning plasmas, Rev. Mod. Phys., 88, 1, 015008 (2016) · doi:10.1103/RevModPhys.88.015008
[17] Crouseilles, N.; Einkemmer, L.; Faou, E., Hamiltonian splitting for the vlasov-maxwell equations, J. Comput. Phys., 283, 224-240 (2015) · Zbl 1351.35223 · doi:10.1016/j.jcp.2014.11.029
[18] Gonzalez, O., Time integration and discrete hamiltonian systems, J. Nonlinear Sci., 6, 449-467 (1996) · Zbl 0866.58030 · doi:10.1007/BF02440162
[19] Güclü, Y., Hadjout, S., Ratnani, A.: Psydac: a high-performance IGA library in python. eccomas2022. https://github.com/pyccel/psydac
[20] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31. Springer, Berlin Series in Computational Mathematics (2006). doi:10.1007/3-540-30666-8 · Zbl 1094.65125
[21] Heidbrink, W., Basic physics of alfvén instabilities driven by energetic particles in toroidally confined plasmas, Phys. Plasmas, 15, 5, 055501 (2008) · doi:10.1063/1.2838239
[22] Hoelzl, M., The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas, Nuclear Fusion, 61, 6, 065001 (2021) · doi:10.1088/1741-4326/abf99f
[23] Holderied, F.; Possanner, S., Magneto-hydrodynamic eigenvalue solver for axisymmetric equilibria based on smooth polar splines, J. Comput. Phys., 464, 111329 (2022) · Zbl 07540362 · doi:10.1016/j.jcp.2022.111329
[24] Holderied, F.; Possanner, S.; Wang, X., Mhd-kinetic hybrid code based on structure-preserving finite elements with particles-in-cell, J. Comput. Phys., 433, 110143 (2021) · Zbl 1515.76175 · doi:10.1016/j.jcp.2021.110143
[25] Jost, G.; Tran, T.; Cooper, W.; Villard, L.; Appert, K., Global linear gyrokinetic simulations in quasi-symmetric configurations, Phys. Plasmas, 8, 7, 3321-3333 (2001) · doi:10.1063/1.1374585
[26] Könies, A.; Briguglio, S.; Gorelenkov, N.; Fehér, T.; Isaev, M.; Lauber, P.; Mishchenko, A.; Spong, DA; Todo, Y.; Cooper, WA, Benchmark of gyrokinetic, kinetic MHD and GYROFLUID codes for the linear calculation of fast particle driven TAE dynamics, Nuclear Fusion, 58, 12, 126027 (2018) · doi:10.1088/1741-4326/aae4e6
[27] Kormann, K.; Sonnendrücker, E., Energy-conserving time propagation for a structure-preserving particle-in-cell vlasov-maxwell solver, J. Comput. Phys., 425, 109890 (2021) · Zbl 07508489 · doi:10.1016/j.jcp.2020.109890
[28] Kraus, M., Kormann, K., Morrison, P.J., Sonnendrücker, E.: GEMPIC: geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83(4), 905830401 (2017)
[29] Lu, Z.; Meng, G.; Hoelzl, M.; Lauber, P., The development of an implicit full f method for electromagnetic particle simulations of alfven waves and energetic particle physics, J. Comput. Phys., 440, 110384 (2021) · Zbl 07512364 · doi:10.1016/j.jcp.2021.110384
[30] Morrison, PJ, Structure and structure-preserving algorithms for plasma physics, Phys. Plasmas, 24, 5, 055502 (2017) · doi:10.1063/1.4982054
[31] Perse, B.; Kormann, K.; Sonnendrücker, E., Geometric particle-in-cell simulations of the vlasov-maxwell system in curvilinear coordinates, SIAM J. Sci. Comput., 43, 1, B194-B218 (2021) · Zbl 1466.65142 · doi:10.1137/20M1311934
[32] Qin, H.; Liu, J.; Xiao, J.; Zhang, R.; He, Y.; Wang, Y.; Sun, Y.; Burby, JW; Ellison, L.; Zhou, Y., Canonical symplectic particle-in-cell method for long-term large-scale simulations of the vlasov-Maxwell equations, Nuclear Fusion, 56, 1, 014001 (2015) · doi:10.1088/0029-5515/56/1/014001
[33] Sovinec, C., Nonlinear magnetohydrodynamics with high-order finite elements, J. Comput. Phys., 195, 355 (2004) · Zbl 1087.76070 · doi:10.1016/j.jcp.2003.10.004
[34] Spong, D.; Carreras, B.; Hedrick, C., Linearized gyrofluid model of the alpha-destabilized toroidal alfvén eigenmode with continuum damping effects, Phys. Fluids B: Plasma Phys., 4, 10, 3316-3328 (1992) · doi:10.1063/1.860386
[35] Todo, Y., Introduction to the interaction between energetic particles and alfvén eigenmodes in toroidal plasmas, Rev. Mod. Plasma Phys., 3, 1, 1 (2018) · doi:10.1007/s41614-018-0022-9
[36] Todo, Y.; Sato, T., Linear and nonlinear particle-magnetohydrodynamic simulations of the toroidal alfven eigenmode, Phys. Plasmas, 5, 1321-1327 (1998) · doi:10.1063/1.872791
[37] Tronci, C.: Hamiltonian approach to hybrid plasma models. J. Phys. A: Math. Theor. 43(37), 375501 (2010). http://stacks.iop.org/1751-8121/43/i=37/a=375501 · Zbl 1200.82063
[38] Tronci, C., Variational mean-fluctuation splitting and drift-fluid models, Plasma Phys. Control. Fusion, 62, 8, 085006 (2020) · doi:10.1088/1361-6587/ab7c4d
[39] Tronci, C., Tassi, E., Camporeale, E., Morrison, P.J.: Hybrid vlasov-mhd models: Hamiltonian vs. non-hamiltonian. Plasma Phys. Control. Fusion 56(9), 095008 (2014)
[40] Xiao, J., Qin, H., Liu, J.: Structure-preserving geometric particle-in-cell methods for vlasov-maxwell systems. Plasma Sci. Technol. 20(11), 110501 (2018). doi:10.1088/2F2058-6272/2Faac3d1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.