×

On a fully-implicit VMS-stabilized FE formulation for low Mach number compressible resistive MHD with application to MCF. (English) Zbl 1539.76100

Summary: This study presents the development and evaluation of a fully-implicit variational multiscale (VMS) stabilized unstructured finite element (FE) formulation for compressible magnetohydrodynamics (MHD) model, at low Mach number regime. The model describes the dynamics of a compressible conducting fluid in the low Mach number limit in the presence of electromagnetic fields and can be used to study aspects of astrophysical phenomena, important science and technology applications, and basic plasma physics phenomena. The specific applications that motivate this study are macroscopic simulations of the longer time-scale stability and disruptions of magnetic confinement fusion (MCF) devices, specifically the ITER tokamak. The discussion considers the development of the VMS FE representation, the structure of the stabilizing terms that deal with significant convective flows, the stabilization of the nearly incompressible response of the fluid flow, and the stabilization of the constraint that enforces the solenoidal involution on the magnetic field. The nonlinear discretized system is solved with scalable preconditioned Newton-Krylov iterative methods, which employs a multiphysics block preconditioning method based on approximate block factorizations and Schur complements. The study presents an evaluation of the VMS method on a 2D cartesian tearing mode instability, and illustrates the scalability of the solvers on MCF relevant problems. A set of results are also presented for longer time-scale stability and disruptions for the ITER tokamak. These include a vertical displacement event (VDE), and a (1,1) internal kink mode. The formulation is demonstrated to be scalable and also reasonably robust with respect to the Lundquist number scaling.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics

Software:

Teko; MueLu; JOREK
Full Text: DOI

References:

[1] Chacón, L.; Knoll, D. A.; Finn, J. M., An implicit nonlinear reduced resistive MHD solver. J. Comput. Phys., 15-36 (2002) · Zbl 1139.76328
[2] Kritz, A.; Keyes, D., Fusion simulation project workshop report. J. Fusion Energy, 1-59 (2009)
[3] Keyes, D. E.; Reynolds, D. R.; Woodward, C. S., Implicit solvers for large-scale nonlinear problems. J. Phys. Conf. Ser., 1, 433 (2006)
[4] Shadid, J. N.; Pawlowski, R. P.; Banks, J. W.; Chacón, L.; Lin, P. T.; Tuminaro, R. S., Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys., 20, 7649-7671 (2010) · Zbl 1425.76312
[5] Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; Tuminaro, R. S.; Chacon, L.; Weber, P. D., Scalable implicit incompressible resistive MHD with stabilized FE and Fully-coupled Newton-Krylov-AMG. Comput. Methods Appl. Mech. Engrg., 1-25 (2016) · Zbl 1423.76275
[6] Chacón, L., An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional viscoresistive magnetohydrodynamics. Phys. Plasmas, 5 (2008)
[7] Jardin, S. C., Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas. J. Comput. Phys., 3, 822-838 (2012) · Zbl 1452.76002
[8] Nardon, E.; Fil, A.; Hoelzl, M.; Huijsmans, G., Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK. Plasma Phys. Control. Fusion, 1 (2016)
[9] Nkonga, B.; Tarcisio-Costa, J.; Vides, J., VMS Finite Element for MHD and Reduced-MHD in Tokamak Plasmas (2016), Inria Sophia Antipolis; Université de Nice-Sophia Antipolis
[10] Kates-Harbeck, J.; Svyatkovskiy, A.; Tang, W., Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature, 7753, 526-531 (2019)
[11] Lehnen, M.; Aleynikova, K.; Aleynikov, P.; Campbell, D.; Drewelow, P.; Eidietis, N.; Gasparyan, Y.; Granetz, R.; Gribov, Y.; Hartmann, N., Disruptions in ITER and strategies for their control and mitigation. J. Nucl. Mater., 39-48 (2015)
[12] De Vries, P.; Pautasso, G.; Humphreys, D.; Lehnen, M.; Maruyama, S.; Snipes, J.; Vergara, A.; Zabeo, L., Requirements for triggering the ITER disruption mitigation system. Fusion Sci. Technol., 2, 471-484 (2016)
[13] Salah, N. B.; Soulaimani, A.; Habashi, W. G.; Fortin, M., A conservative stabilized finite element method for the magento-hydrodyanamics equations. Int. J. Numer. Methods Fluids, 535-554 (1999) · Zbl 0938.76049
[14] Codina, R.; Hernández-Silva, N., Approximation of the thermally coupled MHD problem using a stabilized finite element method. J. Comput. Phys., 1281-1303 (2011) · Zbl 1391.76317
[15] Codina, R.; Hernández-Silva, N., Stabilized finite element approximation of the stationary magento-hydrodyanamics equations. Comput. Mech., 344-355 (2006) · Zbl 1160.76025
[16] Badia, S.; Planas, R.; Gutiérrez-Santacreu, J. V., Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections. Internat. J. Numer. Methods Engrg., 3, 302-328 (2013) · Zbl 1352.76122
[17] Badia, S.; Codina, R.; Planas, R., On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys., 1, 399-416 (2013) · Zbl 1284.76248
[18] Sovinec, C. R.; Glasser, A.; Gianakon, T.; Barnes, D.; Nebel, R.; Kruger, S.; Schnack, D.; Plimpton, S.; Tarditi, A.; Chu, M., Nonlinear magnetohydrodynamics simulation using high-order finite elements. J. Comput. Phys., 1, 355-386 (2004) · Zbl 1087.76070
[19] Hoelzl, M.; Huijsmans, G. T.; Pamela, S. J.; Bécoulet, M.; Nardon, E.; Artola, F. J.; Nkonga, B.; Atanasiu, C. V.; Bandaru, V.; Bhole, A.; Bonfiglio, D.; Cathey, A.; Czarny, O.; Dvornova, A.; Fehér, T.; Fil, A.; Franck, E.; Futatani, S.; Gruca, M.; Guillard, H.; Haverkort, J. W.; Holod, I.; Hu, D.; Kim, S. K.; Korving, S. Q.; Kos, L.; Krebs, I.; Kripner, L.; Latu, G.; Liu, F.; Merkel, P.; Meshcheriakov, D.; Mitterauer, V.; Mochalskyy, S.; Morales, J. A.; Nies, R.; Nikulsin, N.; Orain, F.; Pratt, J.; Ramasamy, R.; Ramet, P.; Reux, C.; S rkim ki, K.; Schwarz, N.; Singh Verma, P.; Smith, S. F.; Sommariva, C.; Strumberger, E.; Van Vugt, D. C.; Verbeek, M.; Westerhof, E.; Wieschollek, F.; Zielinski, J., The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas. Nucl. Fusion, 6 (2021)
[20] Strauss, H. R., Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids, 1, 134-140 (1976)
[21] Drake, J. F.; Antonsen, T. M., Nonlinear reduced fluid equations for toroidal plasmas. Phys. Fluids, 4, 898-908 (1984) · Zbl 0555.76097
[22] Hazeltine, R.; Kotschenreuther, M.; Morrison, P., A four-field model for tokamak plasma dynamics. Phys. Fluids, 8, 2466-2477 (1985) · Zbl 0584.76124
[23] Zeng, X.; Scovazzi, G., A variational multiscale finite element method for monolithic ALE computations of shock hydrodynamics using nodal elements. J. Comput. Phys., 577-608 (2016) · Zbl 1349.65498
[24] Shadid, J. N.; Cyr, E. C.; Pawlowski, R. P.; Wildey, T. W.; Phillips, E.; Hensinger, D.; Conde, S.; Fischer, K.; Robinson, A.; Rider, W., Towards an IMEX Monolithic ALE Method with Integrated UQ for Multiphysics Shock-HydroTech. Rep. (2016), Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Duke Univ …
[25] Helander, P.; Sigmar, D. J., Collisional Transport in Magnetized Plasmas (2005), Cambridge University Press · Zbl 1044.76001
[26] Braginskii, S. I., Transport processes in a plasma. Rev. Plasma Phys., 205-311 (1965)
[27] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 2, 645-673 (2002) · Zbl 1059.76040
[28] Tóth, G., The \(\nabla \cdot B = 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys., 2, 605-652 (2000) · Zbl 0980.76051
[29] Chacón, L., A non-staggered, conservative, \( \nabla \cdot B \to 0\), finite-volume scheme for 3D implicit extended magnetohydrodynamics in curvilinear geometries. Comput. Phys. Comm., 3, 143-171 (2004) · Zbl 1196.76040
[30] Chacón, L.; Del-Castillo-Negrete, D.; Hauck, C. D., An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation. J. Comput. Phys., 719-746 (2014) · Zbl 1349.82072
[31] Hu, D.; Nardon, E.; Lehnen, M.; Huijsmans, G.; van Vugt, D., 3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injection. Nucl. Fusion, 12 (2018)
[32] Fil, A.; Nardon, E.; Hoelzl, M.; Huijsmans, G. T.; Orain, F.; Becoulet, M.; Beyer, P.; Dif-Pradalier, G.; Guirlet, R.; Koslowski, H. R.; Lehnen, M.; Morales, J.; Pamela, S.; Passeron, C.; Reux, C.; Saint-Laurent, F., Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET. Phys. Plasmas, 6 (2015)
[33] Ferraro, N.; Lyons, B.; Kim, C.; Liu, Y.; Jardin, S., 3D two-temperature magnetohydrodynamic modeling of fast thermal quenches due to injected impurities in tokamaks. Nucl. Fusion, 1 (2019)
[34] Lyons, B. C.; Kim, C. C.; Liu, Y. Q.; Ferraro, N. M.; Jardin, S. C.; McClenaghan, J.; Parks, P. B.; Lao, L. L., Axisymmetric benchmarks of impurity dynamics in extended-magnetohydrodynamic simulations. Plasma Phys. Control. Fusion, 6 (2019)
[35] Hughes, T., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg., 387-401 (1995) · Zbl 0866.76044
[36] Hughes, T.; Feijoo, G.; Mazzei, L.; Quincy, J., The variational multiscale method: A paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 3-24 (1998) · Zbl 1017.65525
[37] Hughes, T. J.R.; Scovazzi, G.; Franca, L. P., Chapter 2: Multiscale and Stabilized Methods in Encyclopedia of Computational Mechanics, Edited By Erwin Stein, Rene de Borst and Thomas J.R. Hughes. Volume 3: Fluids (2007), John Wiley
[38] Wimmer, G. A.; Southworth, B. S.; Gregory, T. J.; Tang, X., A fast algebraic multigrid solver and accurate discretization for highly anisotropic heat flux I: open field lines (2023), arXiv preprint arXiv:2301.13351
[39] Günter, S.; Lackner, K.; Tichmann, C., Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas. J. Comput. Phys., 2, 2306-2316 (2007) · Zbl 1388.76453
[40] Green, D.; Hu, X.; Lore, J.; Mu, L.; Stowell, M. L., An efficient high-order numerical solver for diffusion equations with strong anisotropy. Comput. Phys. Comm. (2022) · Zbl 1511.76054
[41] Codina, R.; Badia, S.; Baiges, J.; Principe, J., Variational multiscale methods in computational fluid dynamics. Encycl. Comput. Mech. Second Ed., 1-28 (2017)
[42] Hughes, T. J.; Feijóo, G. R.; Mazzei, L.; Quincy, J. B., The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 1-2, 3-24 (1998) · Zbl 1017.65525
[43] Codina, R., On stabilized finite element methods for linear systems of convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Engrg., 61-88 (2000) · Zbl 0973.76041
[44] Tezduyar, T., Stabilized finite element formulations for incompressible flow computations. Adv. App. Mech., 1 (1992) · Zbl 0747.76069
[45] Guermond, J. L.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys., 11, 4248-4267 (2011) · Zbl 1220.65134
[46] Barth, T. J., 195-285
[47] Dennis, J. E.; Schnabel, R. B.
[48] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput., 16-32 (1996) · Zbl 0845.65021
[49] Shadid, J., A fully-coupled Newton-Krylov solution method for parallel unstructured finite element fluid flow, heat and mass transfer simulations. Int. J. CFD, 199-211 (1999) · Zbl 0969.76049
[50] Cyr, E. C.; Shadid, J. N.; Tuminaro, R. S.; Pawlowski, R. P.; Chacón, L., A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive MHD. SISC, B701-B730 (2013) · Zbl 1273.76269
[51] Cyr, E. C.; Shadid, J. N.; Tuminaro, R. S., Teko: A block preconditioning capability with concrete applications in Navier-Stokes and MHD. SIAM J. Sci. Comput., 5, S307-S331 (2016) · Zbl 06645426
[52] Lin, P. T.; Shadid, J. N.; Hu, J. J.; Pawlowski, R. P.; Cyr, E. C., Performance of fully-coupled algebaric multigrid preconditioners for large-scale VMS resistive MHD. J. Comput. Appl. Math., 782-793 (2018) · Zbl 1443.76152
[53] Ohm, P.; Bonilla, J.; Phillips, E. G.; Shadid, J. N.; Crockatt, M.; Tuminaro, R.; Hu, J.; Tang, X., Scalable multiphysics block preconditioning for low mach number compressible resistive MHD with application to MCF (2023), Submitted
[54] Gee, M.; Siefert, C.; Hu, J.; Tuminaro, R.; Sala, M., ML 5.0 Smoothed Aggregation User’s GuideTech. Rep. SAND2006-2649 (2006), Sandia National Laboratories: Sandia National Laboratories Albuquerque NM, 87185
[55] Murphy, M. F.; Golub, G. H.; Wathen, A. J., A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput., 1969-1972 (2000) · Zbl 0959.65063
[56] Elman, H.; Howle, V. E.; Shadid, J. N.; Shuttleworth, R.; Tuminaro, R. S., A taxonomy of parallel mulit-level block preconditioners for the incompressible Navier-Stokes equations. JCP, 1790-1808 (2008) · Zbl 1290.76023
[57] Berger-Vergiat, L.; Glusa, C. A.; Hu, J. J.; Mayr, M.; Prokopenko, A.; Siefert, C. M.; Tuminaro, R. S.; Wiesner, T. A., MueLu User’s GuideTech. Rep. SAND2019-0537 (2019), Sandia National Laboratories
[58] Liu, S.; Tang, Q.; Tang, X.-z., A parallel cut-cell algorithm for the free-boundary Grad-Shafranov problem. SIAM J. Sci. Comput., 6, B1198-B1225 (2021) · Zbl 1481.65205
[59] Kadomtsev, B. B., Disruptive instability in tokamaks. Sov. Tech. Phys. Lett. (Engl. Transl.); (United States) (1975), URL https://www.osti.gov/biblio/7147025
[60] Beznosov, O.; Appelö, D., Hermite-discontinuous Galerkin overset grid methods for the scalar wave equation. Commun. Appl. Math. Comput. Sci., 3, 391-418 (2021) · Zbl 1499.65481
[61] Finn, J. M.; Chacón, L., Volume preserving integrators for solenoidal fields on a grid. Phys. Plasmas, 5 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.