×

Groups with minimal harmonic functions as small as you like (with an appendix by Nicolás Matte Bon). (English) Zbl 1540.20085

Summary: For any order of growth \(f(n)=o(\log n)\), we construct a finitely-generated group \(G\) and a set of generators \(S\) such that the Cayley graph of \(G\) with respect to \(S\) supports a harmonic function with growth \(f\) but does not support any harmonic function with slower growth. The construction uses permutational wreath products \(\mathbb{Z}/2 \wr_X \Gamma\) in which the base group \(\Gamma\) is defined via its properly chosen action on \(X\).

MSC:

20F69 Asymptotic properties of groups
20P05 Probabilistic methods in group theory
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
20E22 Extensions, wreath products, and other compositions of groups

References:

[1] A. Avez, Harmonic functions on groups. In Differential geometry and relativity, pp. 27-32, Math. Phys. Appl. Math. 3, Springer, Dordrecht, 1976 Zbl 0345.31004 MR 507229 · Zbl 0345.31004 · doi:10.1007/978-94-010-1508-0_4
[2] I. Benjamini, Instability of the Liouville property for quasi-isometric graphs and manifolds of polynomial volume growth. J. Theoret. Probab. 4 (1991), no. 3, 631-637 Zbl 0725.60087 MR 1115166 · Zbl 0725.60087 · doi:10.1007/BF01210328
[3] I. Benjamini, H. Duminil-Copin, G. Kozma, and A. Yadin, Disorder, entropy and harmonic functions. Ann. Probab. 43 (2015), no. 5, 2332-2373 Zbl 1337.60248 · Zbl 1337.60248 · doi:10.1214/14-AOP934
[4] I. Benjamini, H. Duminil-Copin, G. Kozma, and A. Yadin, Minimal growth harmonic func-tions on lamplighter groups. New York J. Math. 23 (2017), 833-858 Zbl 1374.60146 MR 3690233 · Zbl 1374.60146
[5] T. K. Carne, A transmutation formula for Markov chains. Bull. Sci. Math. (2) 109 (1985), no. 4, 399-405 Zbl 0584.60078 MR 837740 · Zbl 0584.60078
[6] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari, The electrical resist-ance of a graph captures its commute and cover times. Comput. Complexity 6 (1997), no. 4, 312-340 Zbl 0905.60049 MR 1613611 · Zbl 0905.60049 · doi:10.1007/BF01270385
[7] C. Chou, Elementary amenable groups. Illinois J. Math. 24 (1980), no. 3, 396-407 Zbl 0439.20017 MR 573475 · Zbl 0439.20017 · doi:10.1215/ijm/1256047608
[8] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15 (1999), no. 1, 181-232 Zbl 0922.60060 MR 1681641 · Zbl 0922.60060 · doi:10.4171/RMI/254
[9] Y. Derriennic, Quelques applications du théorème ergodique sous-additif. Astérisque 74 (1980), 183-201 Zbl 0446.60059 MR 588163 · Zbl 0446.60059
[10] P. G. Doyle and J. L. Snell, Random walks and electric networks. Carus Math. Monogr. 22, Mathematical Association of America, Washington, DC, 1984 Zbl 0583.60065 MR 920811 · Zbl 0583.60065
[11] A. Erschler and A. Karlsson, Homomorphisms to R constructed from random walks. Ann. Inst. Fourier (Grenoble) 60 (2010), no. 6, 2095-2113 Zbl 1274.60015 MR 2791651 · Zbl 1274.60015 · doi:10.5802/aif.2577
[12] H. A. Heilbronn, On discrete harmonic functions. Proc. Cambridge Philos. Soc. 45 (1949), 194-206 Zbl 0033.06303 MR 30051 · Zbl 0033.06303 · doi:10.1017/s0305004100024713
[13] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53 (1986), no. 2, 503-523 Zbl 0614.35066 MR 850547 · Zbl 0614.35066 · doi:10.1215/S0012-7094-86-05329-9
[14] V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy. Ann. Probab. 11 (1983), 457-490 Zbl 0641.60009 · Zbl 0641.60009 · doi:10.1214/aop/1176993497
[15] B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth. J. Amer. Math. Soc. 23 (2010), no. 3, 815-829 Zbl 1246.20038 MR 2629989 · Zbl 1246.20038 · doi:10.1090/S0894-0347-09-00658-4
[16] M. Kotowski and B. Virág, Non-Liouville groups with return probability exponent at most 1/2. Electron. Commun. Probab. 20 (2015), article no. 12 Zbl 1318.60007 MR 3314647 · Zbl 1318.60007 · doi:10.1214/ECP.v20-3774
[17] L. Lovász and P. Winkler, Mixing times. In Microsurveys in discrete probability (Princeton, NJ, 1997), pp. 85-133, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41, American Mathematical Society, Providence, RI, 1998 Zbl 0908.60065 MR 1630411 · Zbl 0908.60065 · doi:10.1090/dimacs/041/06
[18] R. Lyons and Y. Peres, Probability on trees and networks. Camb. Ser. Stat. Probab. Math. 42, Cambridge University Press, New York, 2016 Zbl 1376.05002 MR 3616205 · Zbl 1376.05002 · doi:10.1017/9781316672815
[19] T. Lyons, Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differential Geom. 26 (1987), no. 1, 33-66 Zbl 0599.60011 MR 892030 · Zbl 0599.60011 · doi:10.4310/jdg/1214441175
[20] Y. Peres, T. Sauerwald, P. Sousi, and A. Stauffer, Intersection and mixing times for reversible chains. Electron. J. Probab. 22 (2017), article no. 12 Zbl 1357.60076 MR 3613705 · Zbl 1357.60076 · doi:10.1214/16-EJP18
[21] R. Peyre, A probabilistic approach to Carne’s bound. Potential Anal. 29 (2008), no. 1, 17-36 Zbl 1143.60045 · Zbl 1143.60045 · doi:10.1007/s11118-008-9083-7
[22] L. Saloff-Coste and T. Zheng, Isoperimetric profiles and random walks on some permutation wreath products. Rev. Mat. Iberoam. 34 (2018), no. 2, 481-540 Zbl 1434.20029 MR 3809448 · Zbl 1434.20029 · doi:10.4171/RMI/994
[23] F. Spitzer, Principles of random walk. 2nd edn., Grad. Texts in Math. 34, Springer, New York, 1976 Zbl 0359.60003 MR 388547 · Zbl 0359.60003 · doi:10.1007/978-1-4757-4229-9
[24] T. Tao, A proof of Gromov’s theorem. 2010, httpsW//terrytao.wordpress.com/2010/02/18/ a-proof-of-gromovs-theorem, visited on 14 October 2023
[25] N. T. Varopoulos, Long range estimates for Markov chains. Bull. Sci. Math. (2) 109 (1985), no. 3, 225-252 Zbl 0583.60063 MR 822826 · Zbl 0583.60063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.