×

Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice. (English) Zbl 1070.68059

Summary: Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., \(S\)-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, OCTAVE/MATLAB\(^{\text{tm}}\)). Usually, numerical solutions (traces or trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (\(XS\)-systems and) and here we continue our investigation more deeply.
We propose the use of hybrid automata and we discuss the use of the notions of bisimulation and collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (\(S\)-system) than standard automata. The use of the notion of bisimulation in the definition of the projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.

MSC:

68Q45 Formal languages and automata
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
92C40 Biochemistry, molecular biology
37N25 Dynamical systems in biology

Software:

Matlab; NuSMV; HyTech
Full Text: DOI

References:

[1] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, J. Schug, Hybrid modeling and simulation of biomolecular networks, in: M.D. Di Benedetto, A.L. Sangiovanni-Vincentelli (Eds.), Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, Vol. 2034, Springer, Berlin, pp. 19-32.; R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, J. Schug, Hybrid modeling and simulation of biomolecular networks, in: M.D. Di Benedetto, A.L. Sangiovanni-Vincentelli (Eds.), Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, Vol. 2034, Springer, Berlin, pp. 19-32. · Zbl 0993.92010
[2] Alur, R.; Courcoubetis, C.; Henzinger, T. A.; Ho, P. H., Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems, (Grossman, R. L.; Nerode, A.; Ravn, A. P.; Richel, H., Hybrid Systems, Lecture Notes in Computer Science (1992), Springer: Springer Berlin), 209-229
[3] M. Antoniotti, A. Göllü, SHIFT and SMART-AHS: a language for hybrid systems engineering, modeling, and simulation, in: Conference on Domain Specific Languages, Santa Barbara, CA, USA, October 1997, USENIX.; M. Antoniotti, A. Göllü, SHIFT and SMART-AHS: a language for hybrid systems engineering, modeling, and simulation, in: Conference on Domain Specific Languages, Santa Barbara, CA, USA, October 1997, USENIX.
[4] M. Antoniotti, F.C. Park, A. Policriti, N. Ugel, B. Mishra, Foundations of a query and simulation system for the modeling of biochemical and biological processes, in: Proc. Pacific Symp. of Biocomputing (PSB’03), 2003.; M. Antoniotti, F.C. Park, A. Policriti, N. Ugel, B. Mishra, Foundations of a query and simulation system for the modeling of biochemical and biological processes, in: Proc. Pacific Symp. of Biocomputing (PSB’03), 2003. · Zbl 1219.92018
[5] M. Antoniotti, A. Policriti, N. Ugel, B. Mishra, XS-systems: extended S-systems and algebraic differential automata for modeling cellular behaviour, in: Proc. of Internat. Conf. on High Performance Computing (HiPC’02), 2002.; M. Antoniotti, A. Policriti, N. Ugel, B. Mishra, XS-systems: extended S-systems and algebraic differential automata for modeling cellular behaviour, in: Proc. of Internat. Conf. on High Performance Computing (HiPC’02), 2002. · Zbl 1032.68659
[6] Antoniotti, M.; Policriti, A.; Ugel, N.; Mishra, B., Model building and model checking for biological processes, Cell Biochem. Biophys, 38, 271-286 (2003)
[7] U.S. Bhalla, Data Base of Quantitative Cellular Signaling (DOQCS), Web site at; U.S. Bhalla, Data Base of Quantitative Cellular Signaling (DOQCS), Web site at
[8] R.W. Brockett, Dynamical systems and their associated automata, in: U. Helmke, R. Mennicken, J. Saurer (Eds.), Systems and Networks: Mathematical Theory and Applications, Vol. 77, Akademie-Verlag, Berlin, 1994.; R.W. Brockett, Dynamical systems and their associated automata, in: U. Helmke, R. Mennicken, J. Saurer (Eds.), Systems and Networks: Mathematical Theory and Applications, Vol. 77, Akademie-Verlag, Berlin, 1994. · Zbl 0800.93782
[9] Browne, M. C.; Clarke, E. M.; Grumberg, O., Characterizing finite Kripke structures in propositional temporal logic, Theoret. Comput. Sci, 59, 115-131 (1988) · Zbl 0677.03011
[10] Chabrier, N.; Fages, F., Symbolic model checking of biochemical networks, (Priami, C., Computational Methods in Systems Biology (CMSB’03). Computational Methods in Systems Biology (CMSB’03), Lecture Notes in Computer Science, Vol. 2602 (2003), Springer: Springer Berlin), 149-162 · Zbl 1112.92312
[11] Cimatti, A.; Clarke, E. M.; Giunchiglia, E.; Giunchiglia, F.; Pistore, M.; Roveri, M.; Sebastiani, R.; Tacchella, A., NuSMV 2: an opensource tool for symbolic model checking, (Brinksma, E.; Larsen, K. G., Internat. Conf. on Computer Aided Verification (CAV’02). Internat. Conf. on Computer Aided Verification (CAV’02), Lecture Notes in Computer Science, Vol. 2404 (2003), Springer: Springer Berlin), 359-364 · Zbl 1010.68766
[12] Clarke, E. M.; Grumberg, O.; Peled, D. A., Model Checking (1999), MIT Press: MIT Press Cambridge, MA
[13] Curti, M.; Degano, P.; Baldari, C. T., Casual pi-calculus for biochemical modelling, (Priami, C., Computational Methods in Systems Biology (CMSB’03). Computational Methods in Systems Biology (CMSB’03), Lecture Notes in Computer Science, Vol. 2602 (2003), Springer: Springer Berlin), 21-33 · Zbl 1053.92020
[14] M. Curti, P. Degano, C. Priami, C.T. Baldari, Casual \(π\); M. Curti, P. Degano, C. Priami, C.T. Baldari, Casual \(π\) · Zbl 1071.68074
[15] Curto, R.; Voit, E. O.; Sorribas, A.; Cascante, M., Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man, Biochem. J, 329, 477-487 (1998)
[16] Curto, R.; Voit, E. O.; Sorribas, A.; Cascante, M., Mathematical models of purine metabolism in man, Math. Biosci, 151, 1-49 (1998) · Zbl 0938.92015
[17] Danos, V.; Laneve, C., Graphs for core molecular biology, (Priami, C., Computational Methods in Systems Biology (CMSB’03). Computational Methods in Systems Biology (CMSB’03), Lecture Notes in Computer Science, Vol. 2602 (2003), Springer: Springer Berlin), 34-46 · Zbl 1053.92021
[18] H. de Jong, Modeling and simulation of genetic regulatory systems: a literature review, DIT 4032, Inria, 2000.; H. de Jong, Modeling and simulation of genetic regulatory systems: a literature review, DIT 4032, Inria, 2000.
[19] G. Delzanno, A. Podelski, DMC User Guide, 2000.; G. Delzanno, A. Podelski, DMC User Guide, 2000.
[20] Dovier, A.; Piazza, C.; Policriti, A., A fast bisimulation algorithm, (Berry, G.; Comon, H.; Finkel, A., Proc. Internat. Conf. on Computer Aided Verification (CAV’01). Proc. Internat. Conf. on Computer Aided Verification (CAV’01), Lecture Notes in Computer Science, Vol. 2102 (2001), Springer: Springer Berlin), 79-90 · Zbl 0991.68553
[21] Elowitz, M.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335-338 (2000)
[22] Emerson, E. A., Temporal and modal logic, (van Leeuwen, J., Handbook of Theoretical Computer Science, Vol. B (1990), MIT Press: MIT Press Cambridge, MA), 995-1072 · Zbl 0900.03030
[23] T.A. Henzinger, The theory of hybrid automata, in: Proc. of IEEE Symp. on Logic in Computer Science (LICS’96), IEEE Press, New York, 1996, pp. 278-292.; T.A. Henzinger, The theory of hybrid automata, in: Proc. of IEEE Symp. on Logic in Computer Science (LICS’96), IEEE Press, New York, 1996, pp. 278-292. · Zbl 0959.68073
[24] Henzinger, T. A.; Ho, P. H.; Wong-Toi, H., HYTECHa model checker for hybrid systems, Internat. J. Software Tools Technol. Transfer, 1, 1-2, 110-122 (1997) · Zbl 1060.68603
[25] Hopcroft, J. E.; Ullman, J. D., Introduction to Automata Theory, Languages, and Computation (1979), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0196.01701
[26] James, S.; Nilson, P.; James, J.; Kjellenberg, S.; Fagerstrom, T., Bioluminescence control in the marine bacterium Vibrio fischerian analysis of the dynamic lux regulation, J. Mol. Biol, 296, 4, 1127-1137 (2000)
[27] Karp, P. D.; Riley, M.; Paley, S.; Pellegrini-Toole, A., The MetaCyc database, Nucleic Acid Res, 30, 1, 59 (2002)
[28] Karp, P. D.; Riley, M.; Saier, M.; Paley, S.; Pellegrini-Toole, A., The EcoCyc database, Nucleic Acids Res, 30, 1, 56 (2002)
[29] KEGG Database,; KEGG Database,
[30] Kitano, H., Systems biologyan overview, Science, 295, 1662-1664 (2002)
[31] Kozen, D., Results on the propositional mu-calculus, Theoret. Comput. Sci, 27, 3, 333-354 (1983) · Zbl 0553.03007
[32] McAdams, H. H.; Arkin, A., Simulation of prokaryotic genetic circuits, Ann. Rev. Biophys. Biomol. Struct, 27, 199-224 (1998)
[33] Müller, O.; Stauner, T., Modelling and verification using linear hybrid automata, Math. Comput. Model. Dynamical Systems, 6, 1, 71-89 (2000) · Zbl 0938.93568
[34] Paige, R.; Tarjan, R. E.; Bonic, R., A linear time solution to the single function coarsest partition problem, Theoret. Comput. Sci, 40, 67-84 (1985) · Zbl 0574.68060
[35] PathDB Database,; PathDB Database,
[36] A. Regev, W. Silverman, E. Shapiro, Representation and simulation of biochemical processes using the \(π\); A. Regev, W. Silverman, E. Shapiro, Representation and simulation of biochemical processes using the \(π\)
[37] Sitnikov, D. M.; Schineller, J. B.; Baldwin, T. O., Transcriptional regulation of bioluminescence genes from Vibrio fischeri, Mol. Microbiol, 17, 5, 801-812 (1995)
[38] Voit, E. O., Computational Analysis of Biochemical Systems. A Pratical Guide for Biochemists and Molecular Biologists (2000), Cambridge University Press: Cambridge University Press Cambridge
[39] WIT Database,; WIT Database,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.