×

A computational approach to linear conjugacy in a class of power law kinetic systems. (English) Zbl 1385.92061

Summary: This paper studies linear conjugacy of PL-RDK systems, which are kinetic systems with power law rate functions whose kinetic orders are identical for branching reactions, i.e. reactions with the same reactant complex. Mass action kinetics (MAK) systems are the best known examples of such systems with reactant-determined kinetic orders (RDK). We specify their kinetics with their rate vector and \(T\) matrix. The \(T\) matrix is formed from the kinetic order matrix by replacing the reactions with their reactant complexes as row indices (thus compressing identical rows of branching reactions of a reactant complex to one) and taking the transpose of the resulting matrix. The \(T\) matrix is hence the kinetic analogue of the network’s matrix of complexes \(Y\) with the latter’s columns of non-reactant complexes truncated away. For MAK systems, the \(T\) matrix and the truncated \(Y\) matrix are identical. We show that, on non-branching networks, a necessary condition for linear conjugacy of MAK systems and, more generally, of PL-FSK (power law factor span surjective kinetics) systems, i.e. those whose \(T\) matrix columns are pairwise different, is \(T = T'\), i.e. equality of their \(T\) matrices. This motivated our inclusion of the condition \(T = T'\) in exploring extension of results from MAK to PL-RDK systems. We extend the Johnston-Siegel criterion for linear conjugacy from MAK to PL-RDK systems satisfying the additional assumption of \(T = T'\) and adapt the MILP algorithms of M. D. Johnston et al. [J. Math. Chem. 50, No. 1, 274–288 (2012; Zbl 1238.92077)] and G. Szederkényi [J. Math. Chem. 47, No. 2, 551–568 (2010; Zbl 1198.92052)] to search for linear conjugates of such systems. We conclude by illustrating the results with several examples and an outlook on further research.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
92-08 Computational methods for problems pertaining to biology

References:

[1] C. Arceo, E. Jose, A. Lao, E. Mendoza, Reaction networks and kinetics of biochemical systems. Math. Biosci. 283, 13-29 (2017) · Zbl 1366.92054 · doi:10.1016/j.mbs.2016.10.004
[2] L. Bettoni, Gusek (glpk under scite extended kit). http://gusek.sourceforge.net (2010-2015)
[3] M. Cortez, A. Nazareno, E. Mendoza, Linear conjugacy in rid kinetic systems (in preparation) · Zbl 1385.92061
[4] G. Craciun, C. Pantea, Identifiability of chemical reaction networks. J. Math. Chem. 44, 244 (2008) · Zbl 1145.92040 · doi:10.1007/s10910-007-9307-x
[5] R. Curto, A. Sorribas, M. Cascante, Comparative characterization of the fermentation pathway of saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. Math. Biosci. 130(1), 25-50 (1995) · Zbl 0835.92015 · doi:10.1016/0025-5564(94)00092-E
[6] G. Farkas, Kinetic lumping schemes. Chem. Eng. Sci. 54(17), 3909-3915 (1999) · doi:10.1016/S0009-2509(99)00028-7
[7] A. Gabor, K. Hangos, J. Banga, G. Szederkenyi, Reaction network realizations of rational biochemical systems and their structural properties. J. Math. Chem. 53, 1657-1686 (2015) · Zbl 1331.92057 · doi:10.1007/s10910-015-0511-9
[8] J. Galazzo, J. Bailey, Fermentation pathway kinetics and metabolic flux control in suspended and immobilized saccharomyces cerevisiae. Enzym. Microb. Technol. 12(3), 162-172 (1990) · doi:10.1016/0141-0229(90)90033-M
[9] V. Hars, J. Toth, On the inverse problem of reaction kinetics. Coll. Math. Soc. J. Bolyai 30, 363 (1981) · Zbl 0504.92029
[10] M. Johnston, A computational approach to steady state correspondence of regular networks and generalized mass action systems. Bull. Math. Biol. 77, 1065-1100 (2015) · Zbl 1327.80016 · doi:10.1007/s11538-015-0077-5
[11] M. Johnston, A linear programming approach to dynamical equivalence, linear conjugacy, and the deficiency one theorem. J. Math. Chem. 54, 1612-1631 (2016) · Zbl 1349.92169 · doi:10.1007/s10910-016-0640-9
[12] M. Johnston, D. Siegel, Linear conjugacy of chemical reaction networks. J. Math. Chem. 49, 1263-1282 (2011) · Zbl 1303.92153
[13] M. Johnston, D. Siegel, G. Szederkenyi, A linear programming approach to weak reversibilityand linear conjugacy of chemical reaction networks. J. Math. Chem. 50, 274-288 (2012) · Zbl 1238.92077 · doi:10.1007/s10910-011-9911-7
[14] M. Johnston, D. Siegel, G. Szederkenyi, Computing weakly reversible linearly conjugate networks with minimal deficiency. Math. Biosci. 241, 88-98 (2013) · Zbl 1263.92058 · doi:10.1016/j.mbs.2012.09.008
[15] S. Müller, G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic order subspaces. SIAM J. Appl. Math. 72(6), 1926-1947 (2012) · Zbl 1261.92063 · doi:10.1137/110847056
[16] S. Müller, G. Regensburger, Generalized mass action systems and positive solutions of polynomial equations with real and symbolic exponents, ed. by V.P. Gerdt, W. Koepf, W.M. Seiler, E.H. Vorozhtsov. Proceedings of CASC 2014. Lecture Notes in Computer Science. pp. 302-323 (2014) · Zbl 1421.92043
[17] J. Ray, D. Kirschner, Requirement for multiple activation signals by anti-inflammatory feedback in macrophages. J. Theor. Biol. 241, 276-294 (2006) · Zbl 1447.92104 · doi:10.1016/j.jtbi.2005.11.037
[18] G. Szederkenyi, Comment on identifiability of chemical reaction networks by G. Craciun and C. Pantea. J. Math. Chem. 45, 1172 (2009) · Zbl 1196.92073 · doi:10.1007/s10910-008-9499-8
[19] G. Szederkenyi, Computing sparse and dense realizations of reaction kinetic systems. J. Math. Chem. 47, 551-568 (2010) · Zbl 1198.92052 · doi:10.1007/s10910-009-9525-5
[20] G. Szederkenyi, K. Hangos, Z. Tuza, Finding weakly reversible realizations of chemical reaction networks using optimization. MATCH Commun. Math. Comput. Chem. 67, 193-212 (2012)
[21] D. Talabis, C. Arceo, E. Mendoza, Positive equilibria of a class of power law kinetics (2017, submitted) · Zbl 1385.92063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.