×

On a 2D transmission problem with singularity at the interface modeling autoignition of reactive jets. (English) Zbl 1543.35094

Summary: We consider a traveling wave solution of a two-dimensional transmission problem across the \(y\)-axis modeling autoignition of reactive jets, with a limiting version corresponding to large heat loss. A jump of the normal derivative generates a singularity at the origin. We construct an explicit solution to a problem in a distributional sense that verifies the transmission system and closely examine the properties of the solution near the singularity. Using the Implicit Function Theorem, we study the level sets, especially the one through the origin. The numerical illustrations are consistent with our theoretical results.

MSC:

35K57 Reaction-diffusion equations
35C07 Traveling wave solutions
35A21 Singularity in context of PDEs
35A08 Fundamental solutions to PDEs
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
80A25 Combustion
Full Text: DOI

References:

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, 10th edition, Engineering, 1972. · Zbl 0543.33001
[2] H. J.-M. L. Berestycki Roquejoffre Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66, 743-766, 2013 · Zbl 1270.35264 · doi:10.1007/s00285-012-0604-z
[3] L. A. M. P. R. Caffarelli Soria-Carro Stinga, Regularity for \(C^{1, \alpha}\) interface transmission problems, Arch. Ration. Mech. Anal., 240, 265-294, 2021 · Zbl 1467.35169 · doi:10.1007/s00205-021-01611-0
[4] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, 1969
[5] P. V. D. J. U. G. M. C. M. J. G. I. Gordon Gotti Hegde Hicks Kulis Sivashinsky, An elementary model for autoignition of laminar jets, Proc. Math. Phys. Eng. Sci., 471, 20150059, 2015 · Zbl 1371.80032 · doi:10.1098/rspa.2015.0059
[6] P. V. U. G. M. C. Gordon Hegde Hicks, An elementary model for autoignition of free round turbulent jets, SIAM J. Appl. Math., 78, 705-718, 2018 · Zbl 1390.35016 · doi:10.1137/17M1147780
[7] P. V. U. G. M. C. Gordon Hegde Hicks, On traveling front of ignition in co-flow laminar reactive jets, SIAM J. Appl. Math., 81, 47-59, 2021 · Zbl 1458.35102 · doi:10.1137/20M1357603
[8] P. V. U. G. M. C. M. J. Gordon Hegde Hicks Kulis, On autoignition of co-flow laminar jets, SIAM J. Appl. Math., 76, 2081-2098, 2016 · Zbl 1364.35126 · doi:10.1137/16M1073017
[9] P. V. V. F. Gordon Moroz Nazarov, Gelfand-type problem for turbulent jets, J. Differ. Equ., 269, 5959-5996, 2020 · Zbl 1447.35138 · doi:10.1016/j.jde.2020.04.026
[10] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier Academic Press, 7th edition, Amsterdam, 2007. · Zbl 1208.65001
[11] O. A. V. Y. N. N. Ladyzhenskaya Rivkind Ural’tseva, The classical solvability of diffraction problems, Trudy Mat.inst.steklov., 92, 116-146, 1966 · Zbl 0165.11802
[12] J.-L. Lions, Contributions à un problème de M. M. Picone, Ann. Mat. Pura. Appl., 41, 201-219, 1956 · Zbl 0075.10103 · doi:10.1007/BF02411668
[13] M. Picone, Sur un problème nouveau pour l’équation linéaire aux dérivées partielles de la théorie mathématique classique de l’élasticité, Second Colloque sur les Équations aux Dérivées Partielles, Bruxelles, May 24-26, 1954, Thone, Liège & Masson, Paris, 1955. · Zbl 0065.08702
[14] V. Y. N. N. Rivkind Ural’tseva, The solvability of the diffraction problems for quasilinear parabolic equations, Zap. Nauchn. Sem. POMI., 14, 191-199, 1969 · Zbl 0202.37803
[15] M. Schechter, A generalization of the problem of transmission, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14, 207-236, 1960 · Zbl 0094.29603
[16] N. N. Semenov, Thermal Theory of Combustion and Explosion, Technical Report Archive and Image Library, 1942.
[17] M. P. R. Soria-Carro Stinga, Regularity of viscosity solutions to fully nonlinear elliptic transmission problems, Adv. Math., 435, 109353, 2023 · Zbl 1532.35106 · doi:10.1016/j.aim.2023.109353
[18] G. Stampacchia, Su un problema relativo alle equazioni di tipo ellittico dl secondo ordine, Ricerche Mat., 5, 3-24, 1956 · Zbl 0073.32001
[19] P. Wagner, A new constructive proof of the Malgrange-Ehrenpreis theorem, Am. Math. Mon., 116, 457-462, 2009 · Zbl 1229.35007 · doi:10.1080/00029890.2009.11920961
[20] Z. H. Yang and Y. M. Chu, Monotonicity and inequalities involving the modified Bessel functions of the second kind, J. Math. Anal. Appl., 508 (2022), 125889, 23pp. · Zbl 1501.33001
[21] Z. H. Yang and Y. M. Chu, On approximating the modified Bessel function of the second kind, J. Inequal. Appl., 2017 (2017), Paper No. 41, 8 pp. · Zbl 1357.33002
[22] A. S. Zadorin, Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace, Commun. Pure. Appl. Anal., 21, 1567-1580, 2022 · Zbl 1487.35175 · doi:10.3934/cpaa.2022030
[23] Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau [Plenum], New York, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.