×

Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process. (English) Zbl 1415.92039

Summary: This paper is devoted to the justification of the macroscopic, mean-field nutrient taxis system with doubly degenerate cross-diffusion proposed by J. F. Leyva et al. [Physica A 392, No. 22, 5644–5662 (2013; Zbl 1395.92023)] to model the complex spatio-temporal dynamics exhibited by the bacterium Bacillus subtilis during experiments run in vitro. This justification is based on a microscopic description of the movement of individual cells whose changes in velocity (in both speed and orientation) obey a velocity jump process governed by a transport equation of Boltzmann type. For that purpose, the asymptotic method introduced by T. Hillen and H. G. Othmer [SIAM J. Appl. Math. 61, No. 3, 751–775 (2000; Zbl 1002.35120); ibid. 62, No. 4, 1222–1250 (2002; Zbl 1103.35098)] is applied, which consists of the computation of the leading order term in a regular Hilbert expansion for the solution to the transport equation, under an appropriate parabolic scaling and a first order perturbation of the turning rate of Schnitzer type [M. J. Schnitzer, “Theory of continuum random walks and application to chemotaxis”, Phys. Rev. E (3) 48, No. 4, 2553–2568 (1993)]. The resulting parabolic limit equation at leading order for the bacterial cell density recovers the degenerate nonlinear cross diffusion term and the associated chemotactic drift appearing in the original system of equations. Although the bacterium B. subtilis is used as a prototype, the method and results apply in more generality.

MSC:

92C17 Cell movement (chemotaxis, etc.)
60J75 Jump processes (MSC2010)
35K65 Degenerate parabolic equations

References:

[1] Alt W (1980) Biased random walk models for chemotaxis and related diffusion approximations. J Math Biol 9(2):147-177 · Zbl 0434.92001
[2] Aronson DG (1980) Density-dependent interaction-diffusion systems. In: Stewart WE, Ray WH, Conley CC (eds) Dynamics and modelling of reactive systems (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wisconsin, 1979), Publication of the Mathematics Research Center, University of Wisconsin, vol 44. Academic Press, New York, London, pp 161-176
[3] Arouh S, Levine H (2000) Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics. Phys Rev E 62(1):1444-1447
[4] Ben-Jacob E, Levine H (2006) Self-engineering capabilities of bacteria. J R Soc Interface 3(6):197-214
[5] Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49(4):395-554
[6] Berg HC (1983) Random walks in biology. Princeton University Press, Princeton
[7] Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500-504
[8] Block SM, Segall JE, Berg HC (1983) Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154(1):312-323
[9] Butanda JA, Málaga C, Plaza RG (2017) On the stabilizing effect of chemotaxis on bacterial aggregation patterns. Appl Math Nonlinear Sci 2(1):157-172 · Zbl 1381.92009
[10] Chalub FACC, Markowich PA, Perthame B, Schmeiser C (2004) Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh Math 142(1-2):123-141 · Zbl 1052.92005
[11] Chalub F, Dolak-Struss Y, Markowich P, Oelz D, Schmeiser C, Soreff A (2006) Model hierarchies for cell aggregation by chemotaxis. Math Models Methods Appl Sci 16(7, suppl):1173-1197 · Zbl 1094.92009
[12] Codling EA, Hill NA, Pitchford JW, Simpson SD (2004) Random walk models for the movement and recruitment of reef fish larvae. Mar Ecol Prog Ser 279:215-224
[13] Cohen I, Czirók A, Ben-Jacob E (1996) Chemotactic-based adaptive self organization during colonial development. Phys A 233(3-4):678-698
[14] Dai S, Du Q (2016) Weak solutions for the Cahn-Hilliard equation with degenerate mobility. Arch Ration Mech Anal 219(3):1161-1184 · Zbl 1333.35188
[15] Ellis RS (1973) Chapman-Enskog-Hilbert expansion for a Markovian model of the Boltzmann equation. Commun Pure Appl Math 26(3):327-359 · Zbl 0253.60085
[16] Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597-604
[17] Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361-391 · Zbl 1073.35116
[18] Feller W (1968) An introduction to probability theory and its applications, vol I, 3rd edn. Wiley, New York, London, Sydney · Zbl 0155.23101
[19] Galanti M, Fanelli D, Piazza F (2016) Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review. Front Phys 4:33
[20] Gilding BH, Kersner R (1996) A necessary and sufficient condition for finite speed of propagation in the theory of doubly nonlinear degenerate parabolic equations. Proc R Soc Edinb Sect A 126(4):739-767 · Zbl 0858.35070
[21] Golding I, Kozlovsky Y, Cohen I, Ben-Jacob E (1998) Studies of bacterial branching growth using reaction-diffusion models for colonial development. Phys A 260(3-4):510-554
[22] Golse F, Lions PL, Bt Perthame, Sentis R (1988) Regularity of the moments of the solution of a transport equation. J Funct Anal 76(1):110-125 · Zbl 0652.47031
[23] Gurtin ME, MacCamy RC (1977) On the diffusion of biological populations. Math Biosci 33(1-2):35-49 · Zbl 0362.92007
[24] Habetler GJ, Matkowsky BJ (1975) Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation. J Math Phys 16(4):846-854 · Zbl 0337.45015
[25] Hillen T (2003) Transport equations with resting phases. Eur J Appl Math 14(5):613-636 · Zbl 1050.92052
[26] Hillen T (2004) On the \(L^2\)-moment closure of transport equations: the Cattaneo approximation. Discrete Cont Dyn Syst Ser B 4(4):961-982 · Zbl 1052.92006
[27] Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751-775 · Zbl 1002.35120
[28] Hillen T, Painter KJ (2013) Transport and anisotropic diffusion models for movement in oriented habitats. In: Lewis MA, Maini PK, Petrovskii SV (eds) Dispersal, individual movement and spatial ecology. Lecture notes in mathematics, vol 2071. Springer, Heidelberg, pp 177-222 · Zbl 1347.92065
[29] Hillesdon AJ, Pedley TJ, Kessler JO (1995) The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 57(2):299-344 · Zbl 0814.92004
[30] Ito M, Terahara N, Fujinami S, Krulwich TA (2005) Properties of motility in bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352(2):396-408
[31] Kato T (1980) Perturbation theory for linear operators. Classics in mathematics, 2nd edn. Springer, New York · Zbl 0435.47001
[32] Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N (1997) Modeling spatio-temporal patterns generated by Bacillus subtilis. J Theor Biol 188(2):177-185
[33] Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49(3):581-590
[34] Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30(2):225-234 · Zbl 1170.92307
[35] Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30(2):235-248 · Zbl 1170.92308
[36] Lapidus RI, Schiller R (1976) Model for the chemotactic response of a bacterial population. Biophys J 16(7):779-789
[37] Larsen EW, Keller JB (1974) Asymptotic solution of neutron transport problems for small mean free paths. J Math Phys 15(1):75-81
[38] Lemou M, Mieussens L (2008) A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J Sci Comput 31(1):334-368 · Zbl 1187.82110
[39] Leyva JF, Málaga C, Plaza RG (2013) The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion. Phys A 392(22):5644-5662 · Zbl 1395.92023
[40] Lods B (2005) Semigroup generation properties of streaming operators with noncontractive boundary conditions. Math Comput Modell 42(13):1441-1462 · Zbl 1103.47033
[41] Méndez V, Campos D, Pagonabarraga I, Fedotov S (2012) Density-dependent dispersal and population aggregation patterns. J Theor Biol 309:113-120 · Zbl 1411.92316
[42] Menolascina F, Rusconi R, Fernandez VI, Smriga S, Aminzare Z, Sontag ED, Stocker R (2017) Logarithmic sensing in Bacillus subtilis aerotaxis. NPJ Syst Biol Appl 3:16036
[43] Mesibov R, Ordal GW, Adler J (1973) The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J Gen Physiol 62(2):203-223
[44] Murray JD (2002) Mathematical biology I. An introduction, interdisciplinary applied mathematics, vol 17, 3rd edn. Springer, New York · Zbl 1006.92001
[45] Myers JH, Krebs CJ (1974) Population cycles in rodents. Sci Am 230:38-46
[46] Ohgiwari M, Matsushita M, Matsuyama T (1992) Morphological changes in growth phenomena of bacterial colony patterns. J Phys Soc Jpn 61(3):816-822
[47] Othmer HG, Hillen T (2002) The diffusion limit of transport equations. II. Chemotaxis equations. SIAM J Appl Math 62(4):1222-1250 · Zbl 1103.35098
[48] Othmer HG, Xue C (2013) The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In: Lewis MA, Maini PK, Petrovskii SV (eds) Dispersal, individual movement and spatial ecology, Lecture notes in mathematics, vol 2071. Springer, Heidelberg, pp 79-127 · Zbl 1347.92114
[49] Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263-298 · Zbl 0713.92018
[50] Palczewski, A.; Boffi, VC (ed.); Bampi, F. (ed.); Toscani, G. (ed.), Velocity averaging for boundary value problems, No. 9, 179-186 (1992), River Edge
[51] Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311-338 · Zbl 1296.82044
[52] Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci. 44(12):2881-2897
[53] Sánchez-Garduño F, Maini PK, Kappos ME (1996) A review on travelling wave solutions of one-dimensional reaction-diffusion equations with non-linear diffusion term. Forma 11(1):45-59 · Zbl 1002.35504
[54] Schnitzer MJ (1993) Theory of continuum random walks and application to chemotaxis. Phys Rev E (3) 48(4):2553-2568
[55] Sengers BG, Please CP, Oreffo RO (2007) Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J R Soc Interface 4(17):1107-1117
[56] Sherratt JA (2010) On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion. Math Model Nat Phenom 5(5):64-79 · Zbl 1202.35050
[57] Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. J Theor Biol 79(1):83-99
[58] Stroock DW (1974) Some stochastic processes which arise from a model of the motion of a bacterium. Z Wahrscheinlichkeitstheorie und Verw Gebiete 28:303-315 · Zbl 0282.60047
[59] Tadmor E, Tao T (2007) Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs. Commun Pure Appl Math 60(10):1488-1521 · Zbl 1131.35004
[60] Winkler M (2014) How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J Nonlinear Sci 24(5):809-855 · Zbl 1311.35040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.