×

High-order moments conservation in thermostatted kinetic models. (English) Zbl 1321.90091

Summary: Recently the thermostatted kinetic framework has been proposed as mathematical model for studying nonequilibrium complex systems constrained to keep constant the total energy. The time evolution of the distribution function of the system is described by a nonlinear partial integro-differential equation with quadratic type nonlinearity coupled with the Gaussian isokinetic thermostat. This paper is concerned with further developments of this thermostatted framework. Specifically the term related to the Gaussian thermostat is adjusted in order to ensure the conservation of even high-order moments of the distribution function. The derived framework that constitutes a new paradigm for the derivation of specific models in the applied sciences, is analytically investigated. The global in time existence and uniqueness of the solution to the relative Cauchy problem is proved. Existence and moments conservation of stationary solutions are also performed. Suitable applications and research perspectives are outlined in the last section of the paper.

MSC:

90C15 Stochastic programming

Software:

Chemotaxis
Full Text: DOI

References:

[1] Bagland, V., Wennberg, B., Wondmagegne, Y.: Stationary states for the noncutoff Kac equation with a Gaussian thermostat. Nonlinearity 20, 583-604 (2007) · Zbl 1171.82311 · doi:10.1088/0951-7715/20/3/003
[2] Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale derivation of biological tissues models for mixtures of multicellular growing systems: application to flux-limited chemotaxis. Math. Models Methods Appl. Sci. 20, 1-29 (2010) · Zbl 1423.74568 · doi:10.1142/S0218202510004131
[3] Bellomo, N., Bianca, C., Delitala, M.: Complexity analysis and mathematical tools towards the modelling of living systems. Phys. Life Rev. 6, 144-175 (2009) · doi:10.1016/j.plrev.2009.06.002
[4] Bellouquid, A., Bianca, C.: Modelling aggregation-fragmentation phenomena from kinetic to macroscopic scales. Math. Comput. Model. 52, 802-813 (2010) · Zbl 1202.82065 · doi:10.1016/j.mcm.2010.05.010
[5] Bianca, C.: On the modelling of space dynamics in the kinetic theory for active particles. Math. Comput. Model. 51, 72-83 (2010) · Zbl 1190.82032 · doi:10.1016/j.mcm.2009.08.044
[6] Bianca, C.: On the mathematical transport theory in microporous media: the billiard approach. Nonlinear Anal. Hybrid Syst. 4, 699-735 (2010) · Zbl 1202.37055 · doi:10.1016/j.nahs.2010.04.007
[7] Bianca, C., Fermo, L.: Bifurcation diagrams for the moments of a kinetic type model of keloid-immune system competition. Comput. Mathem. Appl. 61, 277-288 (2011) · Zbl 1211.37102 · doi:10.1016/j.camwa.2010.11.003
[8] Bianca, C., Pennisi, M.: The triplex vaccine effects in mammary carcinoma: a nonlinear model in tune with simtriplex. Nonlinear Anal. Real World Appl. 13, 1913-1940 (2012) · Zbl 1401.92139 · doi:10.1016/j.nonrwa.2011.12.019
[9] Bianca, C.: Kinetic theory for active particles modelling coupled to Gaussian thermostats. Appl. Mathem. Sci. 6, 651-660 (2012) · Zbl 1250.82025
[10] Bianca, C.: An existence and uniqueness theorem for the Cauchy problem for thermostatted-KTAP models. Int. J. Math. Anal. 6, 813-824 (2012) · Zbl 1250.35174
[11] Bianca, C.: Onset of nonlinearity in thermostatted active particles models for complex systems. Nonlinear Anal. Real World Appl. 13, 2593-2608 (2012) · Zbl 1401.92155 · doi:10.1016/j.nonrwa.2012.03.005
[12] Bianca, C.: Modeling complex systems by functional subsystems representation and thermostatted-KTAP methods. Appl. Math. Inf. Sci 6, 495-499 (2012)
[13] Bianca, C.: Thermostatted kinetic equations as models for complex systems in physics and life sciences. Phys. Life Rev. doi:10.1016/j.plrev.2012.08.001 · Zbl 1195.82048
[14] Bianca, C., Coscia, V.: On the coupling of steady and adaptive velocity grids in vehicular traffic modelling. Appl. Math. Lett. 24, 149-155 (2011) · Zbl 1201.90050 · doi:10.1016/j.aml.2010.08.035
[15] Bonilla, L., Soler, J.: High field limit for the Vlasov-Poisson-Fokker-Planck system: a comparison of different perturbation methods. Math. Models Methods Appl. Sci. 11, 1457-1681 (2001) · Zbl 1012.82023 · doi:10.1142/S0218202501001410
[16] Chalub, F.A., Dolak-Struss, Y., Markowich, P., Oeltz, D., Schmeiser, C., Soref, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173-1198 (2006) · Zbl 1094.92009 · doi:10.1142/S0218202506001509
[17] Chalub, F.A., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefe für Mathematik 142, 123-141 (2004) · Zbl 1052.92005 · doi:10.1007/s00605-004-0234-7
[18] Dalgaard, C.L., Strulik, H.: Energy distribution and economic growth. Resour. Energy Econ. 33, 782-797 (2011) · doi:10.1016/j.reseneeco.2011.04.004
[19] Degond, P., Wennberg, B.: Mass and energy balance laws derived from high-field limits of thermostatted Boltzmann equations. Commun. Math. Sci. 5, 355-382 (2007) · Zbl 1140.82033 · doi:10.4310/CMS.2007.v5.n2.a7
[20] Dem’yanov, V.F., Giannessi, F., Karelin, V.V.: Optimal control problems via exact penalty functions. J. Global Optim. 12, 215-223 (1998) · Zbl 0904.49013 · doi:10.1023/A:1008257323671
[21] Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio temporal mechanisms. J. Math. Biol. 51, 595-615 (2005) · Zbl 1077.92003 · doi:10.1007/s00285-005-0334-6
[22] Erban, R., Othmer, H.G.: From individual to collective behaviour in chemotaxis. SIAM J. Appl. Math. 65, 361-391 (2004) · Zbl 1073.35116 · doi:10.1137/S0036139903433232
[23] Evans, DJ; Baranyai, A., No article title, Mol. Phys., 77, 1209 (1992) · doi:10.1080/00268979200103081
[24] Evans, D.J., Hoover, W.G., Failor, B.H., Moran, B., Ladd, A.J.C.: Non-equilibrium molecular-dynamics via Gauss principle of least constraint. Phys. Rev. A 8, 1016-1021 (1983) · doi:10.1103/PhysRevA.28.1016
[25] Ferrara, M., Guerrini, L.: On the dynamics of a three sector growth model. Int. Rev. Econ. 55, 275-283 (2008) · doi:10.1007/s12232-008-0044-7
[26] Filbet, F., Laurencot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50, 189-207 (2005) · Zbl 1080.92014
[27] Gauss, K.F.: Uber ein Neues Allgemeines Grundgesatz der Mechanik (on a new fundamental law of mechanics). J. Reine Angew Math. 4, 232-235 (1829) · ERAM 004.0157cj · doi:10.1515/crll.1829.4.232
[28] Giannessi, F.: Semidifferentiable functions and necessary optimality conditions. J. Optim. Theory Appl. 60, 191-241 (1989) · Zbl 0632.90061 · doi:10.1007/BF00940005
[29] Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi variational inequalities. Control Cybern. 29, 90-110 (2000) · Zbl 1006.49004
[30] Helbing, D.: A mathematical model for the behavior of pedestrians. Behav. Sci. 36, 298-310 (1991) · doi:10.1002/bs.3830360405
[31] Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282-4286 (1995) · Zbl 1236.82115 · doi:10.1103/PhysRevE.51.4282
[32] Henderson, L.F.: On the fluid mechanic of human crowd motion. Transp. Res. 8, 509-515 (1975) · doi:10.1016/0041-1647(74)90027-6
[33] Hoover, W.G., Ladd, A.J.C., Moran, B.: High-strain-rate plastic flow studied via non-equilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818-1820 (1982) · doi:10.1103/PhysRevLett.48.1818
[34] Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169-183 (2003) · Zbl 1125.92324 · doi:10.1146/annurev.fluid.35.101101.161136
[35] Jepps, O.G., Rondoni, L.: Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition. J. Phys. A Math. Theor. 43, 133001 (2010) · Zbl 1195.82048 · doi:10.1088/1751-8113/43/13/133001
[36] Joanne, N., Bright, D., Evans, D.J., Searles, D.J.: New observations regarding deterministic, time-reversible thermostats and Gauss’s principle of least constraint. J. Chem. Phys. 122, 194106 (2005) · doi:10.1063/1.1900724
[37] Lachowicz, M.: Micro and meso scales of description corresponding to a model of tissue invasion by solid tumours. Math. Models Methods Appl. Sci. 15, 1667-1683 (2005) · Zbl 1078.92036 · doi:10.1142/S0218202505000935
[38] Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263-298 (1988) · Zbl 0713.92018 · doi:10.1007/BF00277392
[39] Ragusa, M.A.: Commutators of fractional integral operators on Vanishing-Morrey spaces. J. Glob. Optim. 40, 361-368 (2008) · Zbl 1143.42020 · doi:10.1007/s10898-007-9176-7
[40] Ragusa, M.A.: Necessary and sufficient condition for a VMO function. Appl. Math. Comput. 218, 11952-11958 (2012) · Zbl 1280.42019 · doi:10.1016/j.amc.2012.06.005
[41] Ragusa, M.A.: Embeddings for Morrey-Lorentz spaces. J. Optim. Theory Appl. doi:10.1007/s10957-012-0012-y · Zbl 1270.46025
[42] Sarman, S.; Evans, DJ; Baranyai, A., No article title, Physica A, 208, 191 (1994) · doi:10.1016/0378-4371(94)00026-3
[43] Solow, R.M.: A contribution to the theory of economic growth. Quart. J. Econ. 70, 65-94 (1956) · doi:10.2307/1884513
[44] Swan, T.W.: Economic growth and capital accumulation. Econ. Rec. 32, 334-361 (1956) · doi:10.1111/j.1475-4932.1956.tb00434.x
[45] Wennberg, B., Wondmagegne, Y.: Stationary states for the Kac equation with a Gaussian thermostat. Nonlinearity 14, 633-648 (2004) · Zbl 1049.76058 · doi:10.1088/0951-7715/17/2/016
[46] Wennberg, B., Wondmagegne, Y.: The Kac equation with a thermostatted force field. J. Stat. Phys. 124, 859-880 (2006) · Zbl 1134.82041 · doi:10.1007/s10955-005-9020-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.