×

Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems. (English) Zbl 1311.37039

Kloeden, Peter E. (ed.) et al., Nonautonomous dynamical systems in the life sciences. Cham: Springer (ISBN 978-3-319-03079-1/pbk; 978-3-319-03080-7/ebook). Lecture Notes in Mathematics 2102. Mathematical Biosciences Subseries, 269-307 (2013).
Stochastic differential equations (SDEs) provide an appropriate framework for the modelling of biomedical problems, allowing a detailed presentation about kinetics of biochemical tools and their influence on the illness current and taking into account the “noise” effects. In this work the potential of some classes of SDEs in modelling several problems from biology and medicine is presented. Three applications of modelling with SDEs and SDE-like processes are considered: they are related to intracellular signaling pathway, to radio-oncological treatments and to cell dispersal. For the last of them the modelling via SDEs or simply via stochastic processes offers an alternative to the partial integro-differential approach enabling to numerically handle complex, more realistic (even multiscale) situations which cannot be treated in the PDE framework.
For the entire collection see [Zbl 1282.37004].

MSC:

37H10 Generation, random and stochastic difference and differential equations
92C40 Biochemistry, molecular biology
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Bellen, A.; Zenaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford: Oxford University Press, Oxford · Zbl 1038.65058 · doi:10.1093/acprof:oso/9780198506546.001.0001
[2] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Complexity and mathematical tools toward the modeling of multicellular growing systems, Math. Comput. Model., 51, 441-451 (2010) · Zbl 1190.92001 · doi:10.1016/j.mcm.2009.12.002
[3] Berg, H. C., How bacteria swim, Sci. Am., 233, 36-44 (1975) · doi:10.1038/scientificamerican0875-36
[4] Berg, H. C.; Brown, D. A., Chemotaxis in Escherichia Coli analysed by three-dimensional tracking, Nature, 232, 500-504 (1972) · doi:10.1038/239500a0
[5] N. Bournaveas, V. Calvez, Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables (2008). arXiv:0802.2316v1 [math.AP] · Zbl 1140.92002
[6] D. Bray, Cell Movements. From Molecules to Motility (Garland, New York, 2001)
[7] M.E. Burton, L.M. Shaw, J.J. Schentag, W.E. Evans, Applied Pharmacokinetics and Pharmacodynamics. Principles of Therapeutic Drug Monitoring (Lippincott Williams & Wilkins, Baltimore, 2006)
[8] Cacoullos, T., Estimation of a multivariate density, Ann. Inst. Stat. Math., 18, 179-189 (1966) · Zbl 0202.49603 · doi:10.1007/BF02869528
[9] Carlson, D.; Stuart, R.; Lin, X., Comparison of in vitro and in vivo α∕β ratios for prostate cancer, Phys. Med. Biol., 49, 4477-4491 (2004) · doi:10.1088/0031-9155/49/19/003
[10] Cercignani, C., The Boltzmann Equation and Its Application (1988), Berlin: Springer, Berlin · Zbl 0646.76001 · doi:10.1007/978-1-4612-1039-9
[11] Chadwick, K. N.; Leenhouts, H. P., The Molecular Theory of Radiation Biology (1981), Berlin: Springer, Berlin · doi:10.1007/978-3-642-81519-5
[12] Codling, E. A.; Hill, N. A., Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters, J. Math. Biol., 51, 527-556 (2005) · Zbl 1091.92011 · doi:10.1007/s00285-005-0317-7
[13] Czirók, A.; Schlett, K.; Madarász, E.; Vicsek, T., Exponential distribution of locomotion activity in cell cultures, Phys. Rev. Lett., 81, 3038-3041 (1998) · doi:10.1103/PhysRevLett.81.3038
[14] Curtis, S. B., Lethal and potentially lethal lesions induced by radiation — A unified repair model, Radiat. Res., 106, 252-271 (1986) · doi:10.2307/3576798
[15] Darnell, J. E. Jr, STATs and Gene Regulation. Science, 277, 1630-1635 (1997)
[16] Dawson, A.; Hillen, T., Derivation of the tumour control prabability (TCP) from a cell cycle model, Comput. Math. Method. Med., 7, 121-142 (2006) · Zbl 1111.92029 · doi:10.1080/10273660600968937
[17] Deheuvels, P., Estimation non paramétrique de la densité par histogrames généralisés (II), Publications de l’Institut Statistique de l’Université de Paris, 22, 1-23 (1977) · Zbl 0375.62038
[18] Devroye, L.; Györfi, L., Nonparametric Density Estimation: The L_1View (1985), New York: Wiley, New York · Zbl 0546.62015
[19] Devroye, L., Universal smoothing factor selection in density estimation: theory and practice, Test, 6, 223-320 (1997) · Zbl 0949.62026 · doi:10.1007/BF02564701
[20] Diekmann, O.; van Gils, S.; Verduyn Lunel, S.; Walter, H.-O., Delay Equations, Functional-, Complex-, and Nonlinear Analysis (1995), New York: Springer, New York · Zbl 0826.34002
[21] Donnet, S.; Foulley, J.-L.; Samson, A., Bayesian analysis of growth curves using mixed models defined by stochastic differential equations, Biometrics, 66, 733-741 (2010) · Zbl 1203.62187 · doi:10.1111/j.1541-0420.2009.01342.x
[22] Downward, J., The ins and outs of signalling, Nature, 411, 759-762 (2001) · doi:10.1038/35081138
[23] Eisenbach, M.; Wolf, A.; Welch, M.; Caplan, S. R.; Lapidus, I. R.; Macnab, R. M.; Aloni, H.; Asher, O., Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis, J. Mol. Biol., 211, 551-563 (1990) · doi:10.1016/0022-2836(90)90265-N
[24] Eisenbach, M.; Lengeler, J. W.; Varon, M.; Gutnick, D.; Meili, R.; Firtel, R. A.; Segall, J. E.; Omann, G. M.; Tamada, A.; Murakami, F., Chemotaxis (2004), London: Imperial College Press, London
[25] L.E. Elsgol’s, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments (Academic, New York, 1973) · Zbl 0287.34073
[26] Erban, R.; Othmer, H. G., From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math., 65, 361-391 (2004) · Zbl 1073.35116 · doi:10.1137/S0036139903433232
[27] Erban, R.; Othmer, H. G., From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology, Multiscale Model. Simul., 3, 362-394 (2005) · Zbl 1073.35205
[28] Erban, R.; Hwang, H. J., Global existence results for complex hyperbolic models of bacterial chemotaxis, Discrete Continuous Dyn. Syst. Ser. B, 6, 1239-1260 (2006) · Zbl 1111.35094 · doi:10.3934/dcdsb.2006.6.1239
[29] B. Firmani, L. Guerri, L. Preziosi Tumor immune system competition with medically induced activation disactivation. Math. Models Methods Appl. Sci. 9, 491-512 (1999) · Zbl 0934.92016
[30] Greenberg, E.; Canale-Parola, E., Chemotaxis in Spirocheta aurantia. J. Bacteriol., 130, 485-494 (1977)
[31] Hale, J. K.; Verduyn Lunel, S., Introduction to Functional Differential Equations (1993), New York: Springer, New York · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[32] Hanin, L.; Zaider, M., Cell-survival probability at large doses: an alternative to the linear quadratic model, Phys. Med. Biol., 55, 4687-4702 (2010) · doi:10.1088/0031-9155/55/16/005
[33] Hillen, T., Transport equations with resting phases, Eur. J. Appl. Math., 14, 613-636 (2003) · Zbl 1050.92052 · doi:10.1017/S0956792503005291
[34] Hillen, T.; De Vries, G.; Gong, J.; Finlay, C., From cell population models to tumor control probability: including cell cycle effects, Acta Oncologica, 49, 1315-1323 (2010) · doi:10.3109/02841861003631487
[35] Hillen, T.; Othmer, H. G., The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math., 61, 751-775 (2000) · Zbl 1002.35120 · doi:10.1137/S0036139999358167
[36] Holmström, L.; Klemelä, J., Asymptotic bounds for the expected L^1 error of a multivariate kernel density estimator, J. Multivar. Anal., 42, 245-266 (1992) · Zbl 0754.62021 · doi:10.1016/0047-259X(92)90046-I
[37] A. Jentzen, P.E. Kloeden, in Taylor Approximations of Stochastic Partial Differential Equations. CBMS Lecture Series (SIAM, Philadelphia, 2011) · Zbl 1240.35001
[38] Kelkel, J.; Surulescu, C., On some models for cancer cell migration through tissue, J. Math. Biosci. Eng., 8, 575-589 (2011) · Zbl 1259.35206 · doi:10.3934/mbe.2011.8.575
[39] Kelkel, J.; Surulescu, C., A multiscale approach to cancer cell migration through network tissue, Math. Models Methods Appl. Sci., 22, 1150017.1-1150017.25 (2012) · Zbl 1241.92041 · doi:10.1142/S0218202511500175
[40] Keller, E. F.; Segel, L. A., Model for chemotaxis. J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[41] Kirkpatrick, J. P.; Meyer, J. J.; Marks, L. B., The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery, Semin. Radiat. Oncol., 18, 240-243 (2008) · doi:10.1016/j.semradonc.2008.04.005
[42] Kloeden, P. E.; Lorenz, T., Stochastic differential equations with nonlocal sample dependence, Stoch. Anal. Appl., 28, 937-945 (2010) · Zbl 1205.60131 · doi:10.1080/07362994.2010.515194
[43] Kloeden, P. E.; Lorenz, T., A Peano-like theorem for stochastic differential equations with nonlocal sample dependence, Stoch. Anal. Appl., 31, 19-30 (2013) · Zbl 1273.60081 · doi:10.1080/07362994.2012.727142
[44] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Berlin: Springer, Berlin · Zbl 0752.60043 · doi:10.1007/978-3-662-12616-5
[45] Kozusko, F.; Bajzer, Z., Combining Gompertzian growth and cell population dynamics, Math. Biosci., 185, 153-167 (2003) · Zbl 1021.92012 · doi:10.1016/S0025-5564(03)00094-4
[46] Kozusko, F.; Bourdeau, M., A unified model for sigmoid tumor growth based on cell proliferation and quiescence, Cell Prolif., 40, 824-834 (2007) · doi:10.1111/j.1365-2184.2007.00474.x
[47] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Boston: Academic, Boston · Zbl 0777.34002
[48] Lapidus, R.; Schiller, R., A mathematical model for bacterial chemotaxis, Biophys. J., 14, 825-834 (1974) · doi:10.1016/S0006-3495(74)85952-7
[49] Lea, D. F., Actions of Radiations on Living Cells (1955), New York: Cambridge University Press, New York
[50] T. Lorenz, in Mutational Analysis: A Joint Framework for Cauchy Problems in and Beyond Vector Spaces. Lecture Notes in Mathematics, vol. 1996 (Springer, New York, 2010)
[51] T. Lorenz, C. Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, pp. 1-67, TU Kaiserslautern. Preprint (2013) in reviewing at Math. Models Methods Appl. Sci. (submitted) · Zbl 1300.92016
[52] Mao, X., Stochastic Differential Equations and Applications (1997), Chichester: Harwood, Chichester · Zbl 0892.60057
[53] Marchuk, G. I., Mathematical Modeling of Immune Response in Infectious Diseases (1997), Dordrecht: Kluwer, Dordrecht · Zbl 0876.92015 · doi:10.1007/978-94-015-8798-3
[54] Marron, J. S.; Nolan, D., Canonical Kernels for Density Estimation, Stat. Probab. Lett., 7, 195-199 (1988) · Zbl 0662.62035 · doi:10.1016/0167-7152(88)90050-8
[55] Matvii, O. V.; Cherevko, I. M., Approximation of systems with delay and their stability, Nonlinear Oscillations, 7, 207-215 (2004) · doi:10.1007/s11072-005-0006-x
[56] Meng, T. C.; Somani, S.; Dhar, P., Modelling and simulation of biological systems with stochasticity, Silico Biol., 4, 293-309 (2004)
[57] Murray, J., Mathematical Biology I (2002), Berlin: Springer, Berlin · Zbl 1006.92001
[58] Nisbet, R. M.; Gurney, W. S.C., Modeling Fluctuating Populations (1982), Chichester: Wiley, Chichester · Zbl 0593.92013
[59] S.F.C. O’ Rourke, H. McAneney, T. Hillen, Linear quadratic and tumour control probability modelling in external beam radiotherapy. J. Math. Biol. 58, 799-817 (2009) · Zbl 1311.92105
[60] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications (Springer, New York, 2003) · Zbl 1025.60026
[61] Ölz, D.; Schmeiser, C.; Soreff, A., Multistep navigation of leukocytes: a stochastic model with memory effects, Math. Med. Biol., 22, 291-303 (2005) · Zbl 1080.92015 · doi:10.1093/imammb/dqi009
[62] Othmer, H. G.; Dunbar, S. R.; Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26, 263-298 (1988) · Zbl 0713.92018 · doi:10.1007/BF00277392
[63] Othmer, H. G.; Hillen, T., The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62, 1222-1250 (2002) · Zbl 1103.35098 · doi:10.1137/S0036139900382772
[64] Pagan, A. R.; Ullah, A., Nonparametric Econometrics (1999), Cambridge: Cambridge University Press, Cambridge
[65] Pellegrini, S.; Dusanter-Fourt, I., The structure, regulation and function of the Janus kinase (JAK) and the signal transducers and activators of transcription (STATs), Eur. J. Biochem., 248, 615-633 (1997) · doi:10.1111/j.1432-1033.1997.00615.x
[66] Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists (2001), London/Boca Raton: Chapman & Hall/CRC, London/Boca Raton · Zbl 1027.35001 · doi:10.1201/9781420035322
[67] Qian, H., Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems — An analytical theory, Nonlinearity, 24, R19-R49 (2011) · Zbl 1242.92026 · doi:10.1088/0951-7715/24/6/R01
[68] Repin, Yu. M., On the approximation of systems with delay by ordinary differential equations, Prikl. Mat. Mekh., 29, 2, 226-245 (1965)
[69] Reuther, A. M.; Willoughby, T. R.; Kupelian, P., Toxicity after hypofractionated external beam radiotherapy (70 Gy at 2.5 Gy per fraction) versus standard fractionation radiotherapy (78 Gy at 2 Gy per fraction) for localized prostate cancer, Int. J. Radiat. Oncol. Biol. Phys., 54, 1, 187-188 (2002)
[70] Scott, D. W., Multivariate Density Estimation: Theory, Practice and Visualization (1992), New York: Wiley, New York · Zbl 0850.62006 · doi:10.1002/9780470316849
[71] Silverman, B. W., Density Estimation for Statistics and Data Analysis (1986), London: Chapman & Hall, London · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[72] Srinivasan, S. K.; Vasudevan, R., Introduction to Random Differential Equations and Their Applications (1971), Amsterdam: Elsevier, Amsterdam · Zbl 0242.60002
[73] Surulescu, C.; Surulescu, N., A nonparametric approach to cell dispersal, Int. J. Biomath. Biostat., 1, 109-128 (2010)
[74] Surulescu, C.; Surulescu, N., Modeling and simulation of some cell dispersion problems by a nonparametric method, Math. Biosci. Eng., 8, 263-277 (2011) · Zbl 1259.62103 · doi:10.3934/mbe.2011.8.263
[75] Surulescu, C.; Surulescu, N., On some stochastic differential equation models with applications to biological problems, ECMTB, 14, 106-117 (2011)
[76] C. Surulescu, N. Surulescu, On two approaches to a multiscale model for bacterial chemotaxis. Preprint, Institute for Numerical and Applied Mathematics, University of Münster (2011). http://wwwmath.uni-muenster.de/num/publications/2011/SS11a/ · Zbl 1259.62103
[77] N. Surulescu, On Some Continuous Time Series Models and Their Use in Financial Economics, Ph.D. thesis, University of Heidelberg, 2010 · Zbl 1269.91004
[78] Swameye, I.; Müller, T. G.; Timmer, J.; Sandra, O.; Klingmüller, U., Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling, PNAS, 100, 3, 1028-1033 (2003) · doi:10.1073/pnas.0237333100
[79] Takagi, H.; Sato, M. J.; Yanagida, T.; Ueda, M., Functional analysis of spontaneous cell movement under different physiological conditions. PLoS One, 3, 7, e2648 (2008)
[80] Tobias, C. A.; Blakeley, E. A.; Ngo, F. Q.H.; Yang, T. C.H.; Meyn, R. E.; Withers, H. R., The repair-misrepair model of cell survival, Radiation Biology and Cancer Research, 195-230 (1980), New York: Raven Press, New York
[81] J. Touboul, G. Hermann, O. Faugeras, Noise-induced behaviors in neural mean field dynamics (2011) [ArXiv: 1104.5425v1] · Zbl 1235.92016
[82] Upadhyaya, A.; Rieu, J.-P.; Glazier, J. A.; Sawada, Y., Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Phys. A Stat. Mech. Appl., 293, 549-558 (2001) · doi:10.1016/S0378-4371(01)00009-7
[83] Vieu, P., Quadratic errors for nonparametric estimates under dependence, J. Multivar. Anal., 39, 324-347 (1991) · Zbl 0751.62022 · doi:10.1016/0047-259X(91)90105-B
[84] Zaider, M.; Minerbo, G. N., Tumour control probability: A formulation applicable to any temporal protocol of dose delivery, Phys. Med. Biol., 45, 279-293 (2000) · doi:10.1088/0031-9155/45/2/303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.