×

From a discrete model of chemotaxis with volume-filling to a generalized Patlak-Keller-Segel model. (English) Zbl 1472.92062

Summary: We present a discrete model of chemotaxis whereby cells responding to a chemoattractant are seen as individual agents whose movement is described through a set of rules that result in a biased random walk. In order to take into account possible alterations in cellular motility observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be modulated by a decaying function of the cell density. We formally show that a general form of the celebrated Patlak-Keller-Segel (PKS) model of chemotaxis can be formally derived as the appropriate continuum limit of this discrete model. The family of steady-state solutions of such a generalized PKS model are characterized and the conditions for the emergence of spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between numerical simulations of the discrete model and numerical solutions of the corresponding PKS model, both in one and in two spatial dimensions. The results obtained indicate that there is excellent quantitative agreement between the spatial patterns produced by the two models. Finally, we numerically show that the outcomes of the two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.

MSC:

92C17 Cell movement (chemotaxis, etc.)

References:

[1] Couzin ID, Krause J. 2003 Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1-75. (doi:10.1016/S0065-3454(03)01001-5) · doi:10.1016/S0065-3454(03)01001-5
[2] Johnson BR, Lam SK. 2010 Self-organization, natural selection, and evolution: cellular hardware and genetic software. Bioscience 60, 879-885. (doi:10.1525/bio.2010.60.11.4) · doi:10.1525/bio.2010.60.11.4
[3] Van Haastert PJ, Devreotes PN. 2004 Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626-634. (doi:10.1038/nrm1435) · doi:10.1038/nrm1435
[4] Constantin G, Laudanna C. 2010 Leukocyte chemotaxis: from lysosomes to motility. Nat. Immunol. 11, 463-464. (doi:10.1038/ni0610-463) · doi:10.1038/ni0610-463
[5] Kay RR, Langridge P, Traynor D, Hoeller O. 2008 Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9, 455-463. (doi:10.1038/nrm2419) · doi:10.1038/nrm2419
[6] Kundra V, Escobedo JA, Kazlauskas A, Kim HK, Rhee SG, Williams LT, Zetter BR. 1994 Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature 367, 474-476. (doi:10.1038/367474a0) · doi:10.1038/367474a0
[7] Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. 2019 The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284-294. (doi:10.1038/s41579-019-0182-9) · doi:10.1038/s41579-019-0182-9
[8] Roussos ET, Condeelis JS, Patsialou A. 2011 Chemotaxis in cancer. Nat. Rev. Cancer 11, 573-587. (doi:10.1038/nrc3078) · doi:10.1038/nrc3078
[9] Wadhams GH, Armitage JP. 2004 Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024-1037. (doi:10.1038/nrm1524) · doi:10.1038/nrm1524
[10] Chalub F, Dolak-Struss Y, Markowich P, Oelz D, Schmeiser C, Soreff A. 2006 Model hierarchies for cell aggregation by chemotaxis. Math. Models Meth. Appl. Sci. 16, 1173-1197. (doi:10.1142/S0218202506001509) · Zbl 1094.92009 · doi:10.1142/S0218202506001509
[11] Hillen T, Painter KJ. 2009 A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183-217. (doi:10.1007/s00285-008-0201-3) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[12] Painter KJ. 2019 Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162-182. (doi:10.1016/j.jtbi.2018.06.019) · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[13] Perthame B. 2006 Transport equations in biology. Berlin, Germany: Springer Science & Business Media. · Zbl 1185.92006
[14] Patlak CS. 1953 Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311-338. (doi:10.1007/BF02476407) · Zbl 1296.82044 · doi:10.1007/BF02476407
[15] Keller EF, Segel LA. 1970 Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399-415. (doi:10.1016/0022-5193(70)90092-5) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[16] Calvez V, Corrias L. 2008 The parabolic-parabolic Keller-Segel model in R2. Commun. Math. Sci. 6, 417-447. (doi:10.4310/CMS.2008.v6.n2.a8) · Zbl 1149.35360 · doi:10.4310/CMS.2008.v6.n2.a8
[17] Nagai T. 2001 Global existence and blowup of solutions to a chemotaxis system. Nonlinear Anal. Theor. Meth. Appl. 47, 777-787. (doi:10.1016/S0362-546X(01)00222-X) · Zbl 1042.35574 · doi:10.1016/S0362-546X(01)00222-X
[18] Winkler M. 2013 Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. Journal de Mathématiques Pures et Appliquées 100, 748-767. (doi:10.1016/j.matpur.2013.01.020) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[19] Painter KJ, Hillen T. 2002 Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10, 501-543. · Zbl 1057.92013
[20] Hillen T, Painter KJ. 2001 Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280-301. (doi:10.1006/aama.2001.0721) · Zbl 0998.92006 · doi:10.1006/aama.2001.0721
[21] Painter KJ, Ho W, Headon DJ. 2018 A chemotaxis model of feather primordia pattern formation during avian development. J. Theor. Biol. 437, 225-238. (doi:10.1016/j.jtbi.2017.10.026) · Zbl 1394.92021 · doi:10.1016/j.jtbi.2017.10.026
[22] Bubba F, Pouchol C, Ferrand N, Vidal G, Almeida L, Perthame B, Sabbah M. 2019 A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells. J. Theor. Biol. 479, 73-80. (doi:10.1016/j.jtbi.2019.07.002) · doi:10.1016/j.jtbi.2019.07.002
[23] Othmer HG, Dunbar SR, Alt W. 1988 Models of dispersal in biological systems. J. Math. Biol. 26, 263-298. (doi:10.1007/BF00277392) · Zbl 0713.92018 · doi:10.1007/BF00277392
[24] Hillen T, Othmer HG. 2000 The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751-775. (doi:10.1137/S0036139999358167) · Zbl 1002.35120 · doi:10.1137/S0036139999358167
[25] Painter KJ, Sherratt JA. 2003 Modelling the movement of interacting cell populations. J. Theor. Biol. 225, 327-339. (doi:10.1016/S0022-5193(03)00258-3) · Zbl 1464.92050 · doi:10.1016/S0022-5193(03)00258-3
[26] Charteris N, Khain E. 2014 Modeling chemotaxis of adhesive cells: stochastic lattice approach and continuum description. New J. Phys. 16, 025002. (doi:10.1088/1367-2630/16/2/025002) · doi:10.1088/1367-2630/16/2/025002
[27] Burger M, Markowich P, Pietschmann JF. 2011 Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Kinet. Relat. Models 4, 1025-1047. (doi:10.3934/krm.2011.4.1025) · Zbl 1347.35128 · doi:10.3934/krm.2011.4.1025
[28] Stevens A. 2000 The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, 183-212. (doi:10.1137/S0036139998342065) · Zbl 0963.60093 · doi:10.1137/S0036139998342065
[29] Stevens A, Othmer HG. 1997 Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044-1081. (doi:10.1137/S0036139995288976) · Zbl 0990.35128 · doi:10.1137/S0036139995288976
[30] Champagnat N, Méléard S. 2007 Invasion and adaptive evolution for individual-based spatially structured populations. J. Math. Biol. 55, 147-188. (doi:10.1007/s00285-007-0072-z) · Zbl 1129.60080 · doi:10.1007/s00285-007-0072-z
[31] Chaplain MAJ, Lorenzi T, Macfarlane FR. 2020 Bridging the gap between individual-based and continuum models of growing cell populations. J. Math. Biol. 80, 343-371. (doi:10.1007/s00285-019-01391-y) · Zbl 1432.92007 · doi:10.1007/s00285-019-01391-y
[32] Inoue M. 1991 Derivation of a porous medium equation from many Markovian particles and the propagation of chaos. Hiroshima Math. J. 21, 85-110. (doi:10.32917/hmj/1206128924) · Zbl 0781.60099 · doi:10.32917/hmj/1206128924
[33] Oelschläger K. 1989 On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab. Theory Related Fields 82, 565-586. (doi:10.1007/BF00341284) · Zbl 0673.60110 · doi:10.1007/BF00341284
[34] Othmer HG, Hillen T. 2002 The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62, 1222-1250. (doi:10.1137/S0036139900382772) · Zbl 1103.35098 · doi:10.1137/S0036139900382772
[35] Penington CJ, Hughes BD, Landman KA. 2011 Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E 84, 041120. (doi:10.1103/PhysRevE.84.041120) · doi:10.1103/PhysRevE.84.041120
[36] Penington CJ, Hughes BD, Landman KA. 2014 Interacting motile agents: taking a mean-field approach beyond monomers and nearest-neighbor steps. Phys. Rev. E 89, 032714. (doi:10.1103/PhysRevE.89.032714) · doi:10.1103/PhysRevE.89.032714
[37] Baker RE, Parker A, Simpson MJ. 2019 A free boundary model of epithelial dynamics. J. Theor. Biol. 481, 61-74. (doi:10.1016/j.jtbi.2018.12.025) · Zbl 1422.92033 · doi:10.1016/j.jtbi.2018.12.025
[38] Byrne HM, Drasdo D. 2009 Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657-687. (doi:10.1007/s00285-008-0212-0) · Zbl 1311.92060 · doi:10.1007/s00285-008-0212-0
[39] Oelschläger K. 1990 Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88, 294-346. (doi:10.1016/0022-0396(90)90101-T) · Zbl 0734.60101 · doi:10.1016/0022-0396(90)90101-T
[40] Lorenzi T, Murray PJ, Ptashnyk M. In press From individual-based mechanical models of multicellular systems to free-boundary problems. Interface Free Bound. · Zbl 1446.35225
[41] Motsch S, Peurichard D. 2018 From short-range repulsion to Hele-Shaw problem in a model of tumor growth. J. Math. Biol. 76, 205-234. (doi:10.1007/s00285-017-1143-4) · Zbl 1432.35204 · doi:10.1007/s00285-017-1143-4
[42] Murray PJ, Edwards CM, Tindall MJ, Maini PK. 2009 From a discrete to a continuum model of cell dynamics in one dimension. Phys. Rev. E 80, 031912. (doi:10.1103/PhysRevE.80.031912) · doi:10.1103/PhysRevE.80.031912
[43] Murray PJ, Edwards CM, Tindall MJ, Maini PK. 2012 Classifying general nonlinear force laws in cell-based models via the continuum limit. Phys. Rev. E 85, 021921. (doi:10.1103/PhysRevE.85.021921) · doi:10.1103/PhysRevE.85.021921
[44] Binder BJ, Landman KA. 2009 Exclusion processes on a growing domain. J. Theor. Biol. 259, 541-551. (doi:10.1016/j.jtbi.2009.04.025) · Zbl 1402.92051 · doi:10.1016/j.jtbi.2009.04.025
[45] Dyson L, Maini PK, Baker RE. 2012 Macroscopic limits of individual-based models for motile cell populations with volume exclusion. Phys. Rev. E 86, 031903. (doi:10.1103/PhysRevE.86.031903) · doi:10.1103/PhysRevE.86.031903
[46] Fernando AE, Landman KA, Simpson MJ. 2010 Nonlinear diffusion and exclusion processes with contact interactions. Phys. Rev. E 81, 011903. (doi:10.1103/PhysRevE.81.011903) · doi:10.1103/PhysRevE.81.011903
[47] Johnston ST, Baker RE, McElwain DS, Simpson MJ. 2017 Co-operation, competition and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves. Sci. Rep. 7, 42134. (doi:10.1038/srep42134) · doi:10.1038/srep42134
[48] Johnston ST, Simpson MJ, Baker RE. 2012 Mean-field descriptions of collective migration with strong adhesion. Phys. Rev. E 85, 051922. (doi:10.1103/PhysRevE.85.051922) · doi:10.1103/PhysRevE.85.051922
[49] Landman KA, Fernando AE. 2011 Myopic random walkers and exclusion processes: Single and multispecies. Phys. A Stat. Mech. Appl. 390, 3742-3753. (doi:10.1016/j.physa.2011.06.034) · doi:10.1016/j.physa.2011.06.034
[50] Lushnikov PM, Chen N, Alber M. 2008 Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78, 061904. (doi:10.1103/PhysRevE.78.061904) · doi:10.1103/PhysRevE.78.061904
[51] Simpson MJ, Landman KA, Hughes BD. 2010 Cell invasion with proliferation mechanisms motivated by time-lapse data. Phys. A Stat. Mech. Appl. 389, 3779-3790. (doi:10.1016/j.physa.2010.05.020) · doi:10.1016/j.physa.2010.05.020
[52] Deroulers C, Aubert M, Badoual M, Grammaticos B. 2009 Modeling tumor cell migration: from microscopic to macroscopic models. Phys. Rev. E 79, 031917. (doi:10.1103/PhysRevE.79.031917) · doi:10.1103/PhysRevE.79.031917
[53] Drasdo D. 2005 Coarse graining in simulated cell populations. Adv. Complex Syst. 8, 319-363. (doi:10.1142/S0219525905000440) · Zbl 1077.92014 · doi:10.1142/S0219525905000440
[54] Simpson MJ, Merrifield A, Landman KA, Hughes BD. 2007 Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. Phys. Rev. E 76, 021918. (doi:10.1103/PhysRevE.76.021918) · doi:10.1103/PhysRevE.76.021918
[55] Buttenschoen A, Hillen T, Gerisch A, Painter KJ. 2018 A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. J. Math. Biol. 76, 429-456. (doi:10.1007/s00285-017-1144-3) · Zbl 1392.92012 · doi:10.1007/s00285-017-1144-3
[56] Golé L, Rivière C, Hayakawa Y, Rieu JP. 2011 A quorum-sensing factor in vegetative Dictyostelium discoideum cells revealed by quantitative migration analysis. PLoS ONE 6, e26901. (doi:10.1371/journal.pone.0026901) · doi:10.1371/journal.pone.0026901
[57] d’Alessandro J, Mas L, Aubry L, Rieu JP, Rivière C, Anjard C. 2018 Collective regulation of cell motility using an accurate density-sensing system. J. R. Soc. Interface 15, 20180006. (doi:10.1098/rsif.2018.0006) · doi:10.1098/rsif.2018.0006
[58] Potapov AB, Hillen T. 2005 Metastability in chemotaxis models. J. Dyn. Differ. Equ. 2, 293-330. (doi:10.1007/s10884-005-2938-3) · Zbl 1170.35460 · doi:10.1007/s10884-005-2938-3
[59] Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE. 1996 On the Lambert W function. Adv. Comput. Math. 5, 329-359. (doi:10.1007/BF02124750) · Zbl 0863.65008 · doi:10.1007/BF02124750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.