×

Nonlinear stability of chemotactic clustering with discontinuous advection. (English. French summary) Zbl 1530.92020

Summary: We perform the nonlinear stability analysis of a one-dimensional chemotaxis model of bacterial self-organization, assuming that bacteria respond sharply to chemical signals. The resulting discontinuous advection speed represents the key challenge for the stability analysis. We follow a perturbative approach, where the shape of the cellular profile is clearly separated from its global motion, allowing us to circumvent the discontinuity issue. Further, the homogeneity of the problem leads to two conservation laws, which express themselves in differently weighted functional spaces. This discrepancy between the weights represents another key methodological challenge. We derive an improved Poincaré inequality that allows to transfer the information encoded in the conservation laws to the appropriately weighted spaces. As a result, we obtain exponential relaxation to equilibrium with an explicit rate. A numerical investigation illustrates our results.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35B35 Stability in context of PDEs

Software:

Chemotaxis

References:

[1] Bellomo, Nicola; Bellouquid, Abdelghani; Tao, Youshan; Winkler, Michael, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 9, 1663-1763 (20161021) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[2] Blanchet, Adrien, On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher, Sémin. Laurent Schwartz, EDP Appl., 1-26 (20200526) · Zbl 1326.35400 · doi:10.5802/slsedp.6
[3] Bobkov, Sergey G.; Götze, Friedrich, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 163, 1, 1-28 (20200526) · Zbl 0924.46027 · doi:10.1006/jfan.1998.3326
[4] Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian, Hypocoercivity and sub-exponential local equilibria (2019)
[5] Calvez, Vincent, Chemotactic waves of bacteria at the mesoscale, J. Eur. Math. Soc., 22, 2, 593-668 (20200128) · Zbl 1436.35301 · doi:10.4171/JEMS/929
[6] Calvez, Vincent; Gallouët, Thomas O., Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, Discrete Contin. Dyn. Syst., 36, 3, 1175-1208 (2016) · Zbl 1337.35154 · doi:10.3934/dcds.2016.36.1175
[7] Calvez, Vincent; Raoul, Gaël; Schmeiser, Christian, Confinement by biased velocity jumps: Aggregation of Escherichia coli, Kinet. Relat. Models, 8, 4, 651-666 (20150812) · Zbl 1337.35155 · doi:10.3934/krm.2015.8.651
[8] Chalub, Fabio; Dolak-Struss, Yasmin; Markowich, Peter; Oelz, Dietmar; Schmeiser, Christian; Soreff, Alexander, Model hierarchies for cell aggregation by chemotaxis, Math. Models Methods Appl. Sci., 16, 7, 1173-1197 (2006) · Zbl 1094.92009 · doi:10.1142/S0218202506001509
[9] Filbet, Francis; Laurençot, Philippe; Perthame, Benoît, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50, 2, 189-207 (2005) · Zbl 1080.92014 · doi:10.1007/s00285-004-0286-2
[10] Ford, Roseanne M.; Lauffenburger, Douglas A., Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients, Bull. Math. Biol., 53, 5, 721-749 (1991) · Zbl 0729.92029 · doi:10.1007/BF02461551
[11] Gosse, Laurent; Toscani, Giuseppe, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28, 4, 1203-1227 (2006) · Zbl 1122.76064 · doi:10.1137/050628015
[12] Hillen, Thomas; Othmer, Hans G., The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math., 61, 3, 751-775 (2000) · Zbl 1002.35120 · doi:10.1137/S0036139999358167
[13] Hillen, Thomas; Painter, Kevin J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1, 183 (20191230) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[14] Miclo, Laurent, Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?, Ann. Fac. Sci. Toulouse, Math., 17, 1, 121-192 (20200526) · Zbl 1160.60006 · doi:10.5802/afst.1179
[15] Mischler, Stéphane; Weng, Qilong, On a linear runs and tumbles equation, Kinet. Relat. Models, 10, 3, 799-822 (2017) · Zbl 1357.35048 · doi:10.3934/krm.2017032
[16] Mittal, Nikhil; Budrene, Elena O.; Brenner, Michael P.; van Oudenaarden, Alexander, Motility of Escherichia coli cells in clusters formed by chemotactic aggregation, Proc. Natl. Acad. Sci. USA, 100, 23, 13259-13263 (20140321) · doi:10.1073/pnas.2233626100
[17] Osher, Stanley; Ralston, James, \({L}^1\) stability of travelling waves with applications to convective porous media flow, Commun. Pure Appl. Math., 35, 6, 737-749 (1982) · Zbl 0479.35053 · doi:10.1002/cpa.3160350602
[18] Painter, Kevin J., Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481, 162-182 (20200525) · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[19] Rivero, Mercedes A.; Tranquillo, Robert T.; Buettner, Helen M.; Lauffenburger, Douglas A., Transport models for chemotactic cell populations based on individual cell behavior, Chem. Eng. Sci., 44, 12, 2881-2897 (20200525) · doi:10.1016/0009-2509(89)85098-5
[20] Saragosti, Jonathan; Calvez, Vincent; Bournaveas, Nikolaos; Buguin, Axel; Silberzan, Pascal; Perthame, Benoît, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol., 6, 8 (20160701) · doi:10.1371/journal.pcbi.1000890
[21] Saragosti, Jonathan; Calvez, Vincent; Bournaveas, Nikolaos; Perthame, Benoît; Buguin, Axel; Silberzan, Pascal, Directional persistence of chemotactic bacteria in a traveling concentration wave, Proc. Natl. Acad. Sci. USA, 108, 39, 16235-16240 (20140225) · doi:10.1073/pnas.1101996108
[22] Serre, Denis, Evolutionary equations. Vol. I, \({L}^1\)-stability of nonlinear waves in scalar conservation laws, 473-553 (2004), North-Holland · Zbl 1079.35064
[23] Tindall, Marcus J.; Maini, Philip K.; Porter, S. L.; Armitage, Judith P., Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations, Bull. Math. Biol., 70, 6, 1570-1607 (20140311) · Zbl 1209.92006 · doi:10.1007/s11538-008-9322-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.