×

On the existence of local strong solutions to chemotaxis-shallow water system with large data and vacuum. (English) Zbl 1351.35128

Summary: In this paper, motivated by the chemotaxis-Navier-Stokes system arising from mathematical biology [I. Tuval et al., Proc. Natl. Acad. Sci. USA 102, No. 7, 2277–2282 (2005; Zbl 1277.35332)], a modified shallow water type chemotactic model is derived. For large initial data allowing vacuum, the local existence of strong solutions together with the blow-up criterion is established.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
92C17 Cell movement (chemotaxis, etc.)
35M10 PDEs of mixed type
35Q30 Navier-Stokes equations
35D35 Strong solutions to PDEs
35B45 A priori estimates in context of PDEs
35B44 Blow-up in context of PDEs

Citations:

Zbl 1277.35332
Full Text: DOI

References:

[1] Blanchet, A.; Carrillo, J.; Laurencot, P., Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35, 133-168 (2009) · Zbl 1172.35035
[2] Blanchet, A.; Carrillo, J.; Masmoudi, N., Infinite time aggregation for the critical Patlak-Keller-Segel model in \(R^2\), Comm. Pure Appl. Math., 61, 10, 1449-1481 (2008) · Zbl 1155.35100
[3] Breschband, D.; Desjardins, B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238, 1-2, 211-223 (2003) · Zbl 1037.76012
[4] Breschband, D.; Desjardins, B., On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9), 86, 4, 362-368 (2006) · Zbl 1121.35094
[5] Blanchet, A.; Dolbeault, J.; Perthame, B., Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44, 1-33 (2006) · Zbl 1112.35023
[6] Calvez, V.; Corrias, L., The parabolic-parabolic Keller-Segel model in \(R^2\), Commun. Math. Sci., 6, 2, 417-447 (2008) · Zbl 1149.35360
[7] Chen, L.; Liu, J.; Wang, J., Multidimensional degenerate Keller-Segel system with critical diffusion exponent \(2 n /(n + 2)\), SIAM J. Math. Anal., 44, 1077-1102 (2012) · Zbl 1255.35034
[8] Chen, L.; Wang, J., Exact criterion for global existence and blow up to a degenerate Keller-Segel system, Doc. Math., 19, 103-120 (2014) · Zbl 1288.35111
[9] Chae, M.; Kang, K.; Lee, J., Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39, 7, 1205-1235 (2014) · Zbl 1304.35481
[10] Chalub, F.; Dolak-Struss, Y.; Markowich, P.; Oelz, D.; Schmeiser, C.; Soreff, A., Model hierarchies for cell aggregation by chemotaxis, Math. Models Methods Appl. Sci., 16, 01, 1173-1197 (2006) · Zbl 1094.92009
[11] Childress, S.; Percus, J., Nonlinear aspects of chemotaxis, Math. Biosci., 56, 3, 217-237 (1981) · Zbl 0481.92010
[12] Cho, Y.; Kim, H., On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscripta Math., 120, 1, 91-129 (2006) · Zbl 1091.35056
[13] Choe, H.; Kim, H., Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differential Equations, 190, 2, 504-523 (2003) · Zbl 1022.35037
[14] Chen, Q.; Miao, C.; Zhang, Z., Well-posedness for the viscous shallow water equations in critical spaces, SIAM J. Math. Anal., 40, 443-474 (2008) · Zbl 1169.35048
[15] Duan, B.; Luo, Z.; Zheng, Y., Local existence of classical solutions to shallow water equations with Cauchy data containing vacuum, SIAM J. Math. Anal., 44, 2, 541-567 (2012) · Zbl 1387.35487
[16] Duan, R.; Lorz, A.; Markowich, P., Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35, 9, 1635-1673 (2010) · Zbl 1275.35005
[17] Feireisl, E., Dynamics of Viscous Compressible Fluid (2004), Oxford University Press Inc. · Zbl 1080.76001
[18] Francesco, M.; Lorz, A.; Markowich, P., Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28, 4, 1437-1453 (2010) · Zbl 1276.35103
[19] Guo, Z.; Jiu, Q.; Xin, Z., Radially symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39, 5, 1402-1427 (2008) · Zbl 1151.35071
[20] Hao, C.; Hsiao, L.; Li, H., Cauchy problem for viscous rotating shallow water equations, J. Differential Equations, 247, 12, 3234-3257 (2009) · Zbl 1179.35240
[21] Herrero, M.; Velázquez, J., Singularity patterns in a chemotaxis model, Math. Ann., 306, 1, 583-623 (1996) · Zbl 0864.35008
[22] Huang, X.; Li, J.; Xin, Z., Blowup criterion for viscous baratropic flows with vacuum states, Comm. Math. Phys., 301, 1, 23-35 (2011) · Zbl 1213.35135
[23] Huang, X.; Li, J.; Xin, Z., Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65, 549-585 (2012) · Zbl 1234.35181
[24] Ishida, S.; Yokota, T., Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel system of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18, 2569-2596 (2013) · Zbl 1277.35071
[25] Jager, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329, 819-824 (1992) · Zbl 0746.35002
[26] Jiang, S.; Zhang, P., Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215, 559-581 (2001) · Zbl 0980.35126
[27] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[28] Keller, E.; Segel, L., Model for chemotaxis, J. Theoret. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[29] Li, H.; Li, J.; Xin, Z., Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281, 2, 401-444 (2008) · Zbl 1173.35099
[30] Li, Y.; Pan, R.; Zhu, S., On classical solutions to 2D shallow water equations with degenerate viscosities · Zbl 1369.35065
[31] Li, J.; Xin, Z., Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum · Zbl 1428.35300
[32] Lions, P., Mathematical Topics in Fluid Mechanics, Volume 2, Compressible Models (1998), Oxford Science Publication: Oxford Science Publication Oxford · Zbl 0908.76004
[33] Liu, J.; Lorz, A., A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 5, 643-652 (2011) · Zbl 1236.92013
[34] Lorz, A., Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20, 6, 987-1004 (2010) · Zbl 1191.92004
[35] Luo, Z., Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum, Commun. Math. Sci., 10, 527-554 (2012) · Zbl 1280.35096
[36] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20, 67-104 (1980) · Zbl 0429.76040
[37] Nanjundiah, V., Chemotaxis, signal relaying and aggregation morphology, J. Theoret. Biol., 42, 1, 63-105 (1973)
[38] Patlak, C., Random walk with persistence and external bias, Bull. Math. Biophysics, 15, 3, 311-338 (1953) · Zbl 1296.82044
[39] Senba, T.; Suzuki, T., Applied Analysis: Mathematical Methods in Natural Science (2004), Imperial College Press · Zbl 1053.00001
[40] Sundbye, L., Global existence for the Cauchy problem for the viscous shallow water equations, Rocky Mountain J. Math., 28, 3, 1135-1152 (1998) · Zbl 0928.35129
[41] Suzuki, T., Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and Their Applications, vol. 62 (2005), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston · Zbl 1082.35006
[42] Ton, B., Existence and uniqueness of a classical solution of an initial-boundary value problem of the theory of shallow waters, SIAM J. Math. Anal., 12, 2, 229-241 (1981) · Zbl 0468.76021
[43] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C.; Kessler, J.; Glodstein, R., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102, 7, 2277-2282 (2005) · Zbl 1277.35332
[44] Velázquez, J., Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions, SIAM J. Appl. Math., 64, 4, 1198-1223 (2004) · Zbl 1058.35021
[45] Wang, J.; Chen, L.; Liang, H., Parabolic elliptic type Keller-Segel system on the whole space case, Dyn. Syst., 36, 1061-1084 (2016) · Zbl 1326.35408
[46] Wang, W.; Xu, C., The Cauchy problem for viscous shallow water equations, Rev. Mat. Iberoam., 21, 1, 1-24 (2005) · Zbl 1095.35037
[47] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37, 2, 319-351 (2012) · Zbl 1236.35192
[48] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 5, 1329-1352 (2016) · Zbl 1351.35239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.