×

Statistical models of criminal behavior: the effects of law enforcement actions. (English) Zbl 1202.62177

Summary: We extend an agent-based model of crime-pattern formation initiated by M. B. Short et al. [Math. Models Methods Appl. Sci. 18, Suppl., 1249–1267 (2008; Zbl 1180.35530)] by incorporating the effects of law enforcement agents. We investigate the effect that these agents have on the spatial distribution and overall level of criminal activity in a simulated urban setting. Our focus is on a two-dimensional lattice model of residential burglaries, where each site (target) is characterized by a dynamic attractiveness to burglary and where criminal and law enforcement agents are represented by random walkers. The dynamics of the criminal agents and the target-attractiveness field are, with certain modifications, as described by Short et al. Here the dynamics of enforcement agents are affected by the attractiveness field via a biasing of the walk, the detailed rules of which define a deployment strategy. We observe that law enforcement agents, if properly deployed, will in fact reduce the total amount of crime, but their relative effectiveness depends on the number of agents deployed, the deployment strategy used, and spatial distribution of criminal activity. For certain policing strategies, continuum PDE models can be derived from the discrete systems. The continuum models are qualitatively similar to the discrete systems at large system sizes.

MSC:

62P25 Applications of statistics to social sciences
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65C20 Probabilistic models, generic numerical methods in probability and statistics

Citations:

Zbl 1180.35530

Software:

Chemotaxis
Full Text: DOI

References:

[1] Short, M. B.et al., Math. Models Methods Appl. Sci.18, 1249 (2008). · Zbl 1180.35530
[2] Anselin, L.et al., Criminal Justice, 4 (National Institute of Justice, Washington, DC, 2000) pp. 213-262.
[3] Gottfredson, M. R.; Hirschi, T., A General Theory of Crime, 1990, Stanford Univ. Press
[4] Herrero, M. A.Velázquez, J. J. L., J. Math. Biol.35, 177 (1996). · Zbl 0866.92009
[5] Johnson, S. D.et al., J. Quant. Criminol23, 201 (2007).
[6] Johnson, S.Bowers, K.Hirschfield, A., Brit. J. Criminol37, 224 (1997).
[7] Wilson, J.Kelling, G., Atlantic Mon.249, 29 (1982).
[8] Keizer, K.Lindenberg, S.Steg, L., Science322, 1681 (2008).
[9] Wright, R.; Decker, S., Burglars on the Jobs, 1994, Northeastern Univ. Press
[10] Bernasco, W.Nieuwbeerta, P., Brit. J. Criminol45, 296 (2005).
[11] Bottoms, A.; Wiles, P., Crime, Policing and Place: Essays in Environmental Criminology, 1992, Routledge
[12] Brantingham, P. J.; Brantingham, P. L., Patterns in Crime, 1984, Macmillan
[13] Felson, M., Crime and Nature, 2006, Sage Publications
[14] Rengert, G. F., Crime, Policing and Place: Essays in Environmental Criminology (Routledge, 1992) pp. 109-117.
[15] Beavon, D.Brantingham, P. L.Brantingham, P. J., Crime Prevention Stud.2, 115 (1994).
[16] Brantingham, P. J.Brantingham, P. L., Eur. J. Criminal Policy Res.3, 5 (1995).
[17] Erban, R.Othmer, H. G., SIAM J. Appl. Math65, 361 (2004). · Zbl 1073.35116
[18] Moorcroft, P.Lewis, M.Crabtree, R., Mechanistic home range models predict patterns of coyote territories in yellowstone, Proc. Roy. Soc. London B273 (2006) pp. 1651-1659.
[19] Rengert, G.Piquero, A.Jones, P., Criminol.37, 427 (1999).
[20] Roncek, D.Bell, R., J. Environmental Syst.11, 35 (1981).
[21] Brantingham, P. J.; Brantingham, P. L., Environmental Criminology, 1991, Waveland Press
[22] Bernasco, W.Luykx, F., Criminol.41, 981 (2003).
[23] Snook, B., J. Investigative Psychol. Offender Profiling11, 53 (2004).
[24] McLaughlin, L.et al., Int. J. Police Sci. Management9, 99 (2007).
[25] Ratcliffe, J. H., Eur. J. Criminal Policy Res.10, 65 (2004).
[26] Walsh, W. F., Policing: An Int. J. Police Strategies & Management24, 347 (2001).
[27] Federal Bureau of Investigation — uniform crime reports, December 2008.
[28] Cohen, L.Felson, M., Amer. Sociol. Rev.44, 588 (1979).
[29] Spohn, H., Large Scale Dynamics of Interacting Particles, 1991, Springer · Zbl 0742.76002
[30] Bellomo, N.et al., Math. Model. Meth. Appl. Sci.17, 1675 (2007). · Zbl 1135.92009
[31] Bendahmane, M.Karlsen, K. H.Urbano, J. M., Math. Models Methods Appl. Sci.17, 783 (2007). · Zbl 1133.35061
[32] Chalub, F.et al., Math. Models Methods Appl. Sci.16, 1173 (2006). · Zbl 1094.92009
[33] Chalub, F. A. C. C.et al., Monatsh. Math.142, 123 (2004).
[34] Dolak, Y.Schmeiser, C., J. Math. Biol.51, 595 (2005). · Zbl 1077.92003
[35] Filbet, F.Laurençot, P.Perthame, B., J. Math. Biol.50, 189 (2005). · Zbl 1080.92014
[36] Lewis, M.White, K.Murray, J., J. Math. Biol.35, 749 (1997). · Zbl 0882.92031
[37] Othmer, H. G.Hillen, T., SIAM J. Appl. Math.62, 1222 (2002). · Zbl 1103.35098
[38] Stevens, A., SIAM J. Appl. Math.61, 183 (2000).
[39] Burger, M.Di Francesco, M.Dolak-Struss, Y., SIAM J. Math. Anal.38, 1288 (2006). · Zbl 1114.92008
[40] Byrne, H. M.Owen, M. R., J. Math. Biol.49, 604 (2004). · Zbl 1055.92004
[41] del Pino, M.Wei, J., Nonlinearity19, 661 (2006). · Zbl 1137.35007
[42] Escudero, C., Nonlinearity19, 2909 (2006). · Zbl 1121.35068
[43] Keller, E. F.Segel, L. A., J. Theor. Biol.26, 399 (1970). · Zbl 1170.92306
[44] Luckhaus, S.Sugiyama, Y., M2AN40, 597 (2006).
[45] Senba, T., Nonlinear Anal.: Theory, Meth. & Applications66, 1817 (2007). · Zbl 1114.35090
[46] Sugiyama, Y., Diff. Integral Eqns.19, 841 (2006). · Zbl 1212.35240
[47] Velázquez, J. J. L., J. Diff. Eqns.206, 315 (2004). · Zbl 1063.35068
[48] Cross, M. C.Hohenberg, P. C., Rev. Mod. Phys.65, 851 (1993). · Zbl 1371.37001
[49] G. Kelling, T. Pate, D. Dieckman and C. Brown, The Kansas City Preventive Patrol Experiment: A Summary Report (Police Foundation, 1974).
[50] Braga, A., The ANNALS Amer. Acad. Political and Social Sci.578, 104 (2001).
[51] Boyd, J. P., Chebyshev and Fourier Spectral Methods, 2001, Dover · Zbl 0994.65128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.