×

Collective topological active particles: non-ergodic superdiffusion and ageing in complex environments. (English) Zbl 1498.60397

MSC:

60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Schweitzer, F., Browning, agents and active particles: collective dynamics in the natural and social sciences. 2nd print (2007), Springer: Springer Berlin; New York · Zbl 1193.91006
[2] Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I., Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc Natl Acad Sci, 105, 1232-1237 (2008)
[3] Herbert-Read, J.; Perna, A.; Mann, R. P.; Schaerf, T. M.; Sumpter, D. J.T.; Ward, A. J.W., Inferring the rules of interaction of shoaling fish, Proc Natl Acad Sci, 108, 18726-18731 (2011)
[4] Lauga, E.; DiLuzio, W. R.; Whitesides, G. M.; Stone, H. A., Swimming in circles: motion of bacteria near solid boundaries, Biophys J, 90, 400-412 (2006)
[5] Friedrich, B. M.; Jülicher, F., The stochastic dance of circling sperm cells: sperm chemotaxis in the plane, New J Phys, 10, 123025 (2008)
[6] Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G., Active particles in complex and crowded environments, Rev Mod Phys, 88, 045006 (2016)
[7] Kruk, N.; Carrillo, J. A.; Koeppl, H., Traveling bands, clouds, and vortices of chiral active matter, Phys Rev E, 102, 022604 (2020)
[8] Schaller, V.; Weber, C.; Semmrich, C.; Frey, E.; Bausch, A. R., Polar patterns of driven filaments, Nature, 467, 73-77 (2010)
[9] Nagai, K. H.; Sumino, Y.; Montagne, R.; Aranson, I. S.; Chatè, H., Collective motion of self-propelled particles with memory, Phys Rev Lett, 114, 168001 (2015)
[10] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys Rev Lett, 75, 1226-1229 (1995)
[11] Peruani, F.; Ginelli, F.; Bär, M.; Chaté, H., Polar vs. apolar alignment in systems of polar self-propelled particles, J Phys, 297, 012014 (2011)
[12] Duan, Y.; Mahault, B.; Ma, Y.; Shi, X.; Chaté, H., Breakdown of ergodicity and self-averaging in polar flocks with quenched disorder, Phys Rev Lett, 126, 178001 (2021)
[13] Chen, Y.; Huang, J.; Meng, F.-H.; Li, T.-C.; Ai, B. Q., Collective motion of polar active particles on a sphere, Chinese Phys B, 30, 100510 (2021)
[14] Ginelli, F.; Chaté, H., Relevance of metric-free interactions in flocking phenomena, Phys Rev Lett, 105, 168103 (2010)
[15] Shankar S., Souslov A., Bowick M.J., Marchetti M.C., Vitelli V.. Topological active matter. ArXiv:201000364 [Cond-Mat]2021;.
[16] Rahmani, P.; Peruani, F.; Romanczuk, P., Topological flocking models in spatially heterogeneous environments, Commun Phys, 4, 206 (2021)
[17] Moussaid, M.; Helbing, D.; Theraulaz, G., How simple rules determine pedestrian behavior and crowd disasters, Proc Natl Acad Sci, 108, 6884-6888 (2011)
[18] Risken, H., The Fokker-Planck equation: methods of solution and applications (1996), Springer-Verlag: Springer-Verlag New York: Springer-Verlag · Zbl 0866.60071
[19] Scher, H.; Montroll, E. W., Anomalous transit-time dispersion in amorphous solids, Phys Rev B, 12, 2455-2477 (1975)
[20] Bouchaud, J.-P.; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys Rep, 195, 127-293 (1990)
[21] Wang, C.-Y.; Sun, C.-F.; Zhang, H.; Yi, M.; Sun, Z., Anomalous diffusion resulted from fractional damping, Chaos Solitons Fractals, 105, 176-179 (2017)
[22] dos Santos, M. A.F., Analytic approaches of the anomalous diffusion: a review, Chaos Solitons Fractals, 124, 86-96 (2019) · Zbl 1448.60193
[23] Li, Y.; Guo, W.; Du, L.-C.; Mei, D. C., Subdiffusion and ergodicity breaking in heterogeneous environments subject to Lévy noise, Physica A, 514, 948-956 (2019) · Zbl 07562428
[24] Guo, W.; Li, Y.; Song, W.-H.; Du, L. C., Ergodicity breaking and ageing of underdamped Brownian dynamics with quenched disorder, J Stat Mech, 2018, 033303 (2018) · Zbl 1459.82234
[25] Cherstvy, A. G.; Metzler, R., Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes, Phys Rev E, 90, 012134 (2014)
[26] Schulz, J. H.P.; Barkai, E.; Metzler, R., Aging effects and population splitting in single-particle trajectory averages, Phys Rev Lett, 110, 020602 (2013)
[27] Manzo, C.; Torreno-Pina, J. A.; Massignan, P.; Lapeyre, G. J.; Lewenstein, M.; Garcia Parajo, M. F., Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity, Phys Rev X, 5, 011021 (2015)
[28] Jeon, J.-H.; Tejedor, V.; Burov, S.; Barkai, E.; Selhuber-Unkel, C.; Berg-S?rensen, K., In vivo anomalous diffusion and weak ergodicity breaking of lipid granules, Phys Rev Lett, 106, 048103 (2011)
[29] Brokmann, X.; Hermier, J.-P.; Messin, G.; Desbiolles, P.; Bouchaud, J.-P.; Dahan, M., Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys Rev Lett, 90, 120601 (2003)
[30] Bodrova, A.; Chechkin, A. V.; Cherstvy, A. G.; Metzler, R., Quantifying non-ergodic dynamics of force-free granular gases, Phys Chem Chem Phys, 17, 21791-21798 (2015)
[31] Mu?oz-Gil, G.; Volpe, G.; Garcia-March, M. A.; Aghion, E.; Argun, A.; Hong, C. B., Objective comparison of methods to decode anomalous diffusion, Nat Commun, 12, 6253 (2021)
[32] Shi H.-D., Du L.-C., Huang F.-J., Guo W.. Weak ergodicity breaking and anomalous diffusion in collective motion of active particles under spatiotemporal disorder. Phys Rev E; (revised).
[33] See supplemental material: movie 1 and 2 respectively are the motion of topological active particles with \(k N N\) interaction and \(V T\) interaction in \(\rho_o = 0\). Movie 3 and 4 respectively are the motion of topological active particles with \(k N N\) interaction and \(V T\) interaction in \(\rho_o = 0.5\). Movie 5 and 6 respectively are the motion of topological active particles with \(k N N\) interaction and \(V T\) interaction in \(\rho_o = 1\). Other parameters: self-propulsion speed \(v_0 = 0.1\), time step \(\Delta t = 0.1, k = 6\) and the number of active particles \(N_a = L \times L = 100\).
[34] Higham, J. E.; Shahnam, M.; Vaidheeswaran, A., Anomalous diffusion in a bench-scale pulsed fluidized bed, Phys Rev E, 103, 043103 (2021)
[35] Wang, W.; Cherstvy, A. G.; Chechkin, A. V.; Thapa, S.; Seno, F.; Liu, X., Fractional Brownian motion with random diffusivity: emerging residual nonergodicity below the correlation time, J Phys A, 53, 474001 (2020) · Zbl 1519.82101
[36] Cherstvy, A. G.; Wang, W.; Metzler, R.; Sokolov, I. M., Inertia triggers nonergodicity of fractional Brownian motion, Phys Rev E, 104, 024115 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.