×

Two-dimensional model of vesicle adhesion on curved substrates. (English) Zbl 1202.76166

Summary: We develop a two dimensional model of a vesicle adhered on a curved substrate via long-range molecular interactions while subjected to a detachment force. The relationship between the force and displacement of the vesicle is investigated as a function of the substrate shape. It is shown that both the force- displacement relationship and the maximum force at pull-off are significantly dependent on the substrate shape. The results suggest that probes with different tip shapes may be designed for cell manipulation. For example, we demonstrate that a vesicle can be pulled off a flat surface using a probe with a curved tip.

MSC:

76Z05 Physiological flows
92C10 Biomechanics
Full Text: DOI

References:

[1] Johnson, K. L.; Kendall, K.; Roberts, A. D., Surface energy and contact of elastic solids, Proc. R. Soc. Lond. A, 324, 301-313 (1971)
[2] Derjaguin, B. V.; Muller, V. M.; Topovov, Y. P., Effect of contact deformations on adhesion and particles, J. Colloid Interface Sci., 53, 314-326 (1975) · doi:10.1016/0021-9797(75)90018-1
[3] Maugis, D., Adhesion of spheres - The JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci., 150, 243-269 (1992) · doi:10.1016/0021-9797(92)90285-T
[4] Chen, S. H.; Gao, H., Adhesive contact of an elastic cylinder on stretched substrate, Proc. R. Soc. Lond. A, 462, 211-228 (2006) · Zbl 1149.74369
[5] Chu, Y. S.; Dufour, S.; Thiery, J. P.; Perez, E.; Pincet, F., Johnson-Kendall-Roberts theory applied to living cells, Phys. Rev. Lett., 94, 028102-10281024 (2005) · doi:10.1103/PhysRevLett.94.028102
[6] Gao, H.; Shi, W.; Freund, L. B., Mechanics of receptor- mediated endocytosis, Proc. Nat. Acad. Sci., 102, 9469-9474 (2005) · doi:10.1073/pnas.0503879102
[7] Zhu, C.; Bao, G.; Wang, N., Cell mechanics: Mechanical response, cell adhesion, and molecular deformation, Annu. Rev. Biomed. Eng., 2, 189-226 (2000) · Zbl 0961.68029 · doi:10.1146/annurev.bioeng.2.1.189
[8] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell (2002), New York: Garland Science, New York
[9] Lipowsky, R.; Trigg, F. L., Vesicles and biomembranes, Encyclopedia of Applied Physics., 199-222 (1998), Weiheim and New York: WCH Publishers, Weiheim and New York
[10] Canham, P. B., Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell, J. Theor. Biol., 26, 61-81 (1970) · doi:10.1016/S0022-5193(70)80032-7
[11] Helfrich, W., Elastic properties of lipid bilayers – theory and possible experiments, Z. Naturforsch. C, 28, 693-703 (1973)
[12] Freund, L. B.; Lin, Y., The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion, J. Mech. Phys. Solids, 52, 2455-2472 (2004) · Zbl 1084.74034 · doi:10.1016/j.jmps.2004.05.004
[13] Bell, G. I., Models for the specific adhesion of cells to cells, Science, 200, 618-627 (1978) · doi:10.1126/science.347575
[14] Bell, G. I.; Dembo, M.; Bongrand, P., Cell adhesion: competition between nonspecific repulsion and specific bonding, Biophys. J., 45, 1051-1064 (1984)
[15] Dembo, M.; Torney, D. C.; Saxman, K.; Hammer, D., The reaction-limited kinetics of membrane-to-surface adhesion and detachment, Proc. R. Soc. Lond. B, 234, 55-83 (1988) · doi:10.1098/rspb.1988.0038
[16] Boulbitch, A.; Guttenberg, Z.; Sackmann, E., Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system, Biophys. J., 81, 2743-2751 (2001)
[17] Brochard-Wyart, F.; de Gennes, P. G., Adhesion induced by mobile binders: dynamics, Proc. Natl. Acad. Sci. USA, 99, 854-859 (2002) · doi:10.1073/pnas.112221299
[18] Seifert, U.; Lipowsky, R., Adhesion of vesicles, Phys. Rev. A, 42, 4768-4771 (1990) · doi:10.1103/PhysRevA.42.4768
[19] Lipowsky, R., The conformation of membranes, Nature, 349, 475-481 (1991) · doi:10.1038/349475a0
[20] Seifert, U., Adhesion of vesicles in two dimensions, Phys. Rev. A, 43, 6803-6814 (1991) · doi:10.1103/PhysRevA.43.6803
[21] Seifert, U., Configurations of fluid membranes and vesicles, Adv. Phys., 46, 13-137 (1997) · doi:10.1080/00018739700101488
[22] Seifert, U., Hydrodynamic lift on bound vesicles, Phys. Rev. Lett., 83, 876-879 (1999) · doi:10.1103/PhysRevLett.83.876
[23] Boulbitch, A., Enforced unbinding of bead adhering to a biomembrane by generic force, Europhys. Lett., 59, 910-915 (2002) · doi:10.1209/epl/i2002-00129-8
[24] Boulbitch, A., Enforced unbinding of biomembranes whose mutual adhesion is ediated by a specific interaction, Eur. Biophys. J. Biophys. Lett., 31, 637-642 (2003)
[25] Pierrat, S.; Brochard-Wyart, F.; Nassop, P., Enforced detachment of red blood cells adhering to a surface: static and dynamics, Biophys. J., 87, 2855-2869 (2004) · doi:10.1529/biophysj.104.043695
[26] Smith, A. S.; Sackmann, E.; Seifert, U., Effects of a pulling force on the shape of a bound vesicle, Europhys. Lett., 64, 281-287 (2003) · doi:10.1209/epl/i2003-00499-9
[27] Smith, A. S.; Sackmann, E.; Seifert, U., Pulling tethers from adhered vesicles, Phys. Rev. Lett., 92, 208101-12081014 (2004) · doi:10.1103/PhysRevLett.92.208101
[28] Guttenberg, Z.; Bausch, A. R.; Hu, B.; Bruinsma, R.; Moroder, L.; Sackmann, E., Measuring ligand-receptor unbinding forces with magnetic beads: Molecular leverage, Langmuir, 14, 8984-8993 (2000) · doi:10.1021/la000279x
[29] Spolenak, R.; Gorb, S.; Gao, H.; Arzt, E., Effects for contact shape on the scaling biological attachments, Proc. R. Soc. Lond. A,, 461, 305-319 (2005) · doi:10.1098/rspa.2004.1326
[30] Gao, H.; Yao, H., Shape insensitive optimal adhesion of nanoscale fibrillar structures, Proc. Natl. Acad. Sci. USA, 101, 7851-7856 (2004) · doi:10.1073/pnas.0400757101
[31] Ou-Yang, Z. C.; Helfrich, W., Instability and deformation of a spherical vesicle by pressure, Phys. Rev. Lett., 59, 2486-2488 (1987) · doi:10.1103/PhysRevLett.59.1569
[32] Ou-Yang, Z. C.; Helfrich, W., Bending energy of vesicle membranes: general expressions for the first, second and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, 39, 5280-5288 (1989) · doi:10.1103/PhysRevA.39.5280
[33] Julicher, F.; Lipowsky, R., Shape transformations of vesicles with intramembrane domains, Phys. Rev. E, 53, 2670-2683 (1996) · doi:10.1103/PhysRevE.53.2670
[34] Pierres, A.; Benoliel, A. M.; Bongrand, P., Cell fitting to adhesive surfaces: a prerequisite to firm attachment and subsequent events, Eur. Cells Mater., 3, 31-45 (2002)
[35] Evans, E.; Yeung, A., Hidden dynamics in rapid changes of bilayer shape, Chem. Phys. Lipids, 73, 39-56 (1994) · doi:10.1016/0009-3084(94)90173-2
[36] Evans, E.; Bowman, H.; Leung, A.; Needham, D.; Tirrell, D., Biomembrane templates for nanoscale conduits and networks, Science, 273, 933-935 (1996) · doi:10.1126/science.273.5277.933
[37] Heinrich, V.; Bozic, B.; Svetina, S.; Zeks, B., Vesicle deformation by an axial load: from elongated shapes to tether vesicles, Biophys. J., 76, 2056-2071 (1999) · doi:10.1016/S0006-3495(99)77362-5
[38] Derenyi, I.; Julicher, F.; Prost, J., Formation and interaction of membrane tubes, Phys. Rev. Lett., 88, 238101-12381014 (2002) · doi:10.1103/PhysRevLett.88.238101
[39] Powers, T. R.; Huber, G.; Goldstein, R. E., Fluid-membrane tethers: minimal surfaces and elastic boundary layers, Phys. Rev. E, 65, 041901-104190111 (2002) · doi:10.1103/PhysRevE.65.041901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.