×

Min-max theory for free boundary minimal hypersurfaces. II: General Morse index bounds and applications. (English) Zbl 1466.53074

For any smooth Riemannian metric on an \((n+1)\)-dimensional compact manifold with boundary \((M,\partial M)\) where \(3\leq n+1\leq 7\), the authors establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min-max theory in the Almgren-Pitts setting. They apply their Morse index estimates to prove that for almost every (in the \(C^{\infty}\) Baire sense) Riemannian metric, the union of all compact, properly embedded free-boundary minimal hypersurfaces is dense in \(M\). If \(\partial M\) is further assumed to have a strictly mean convex point, they show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Their results prove a conjecture of Yau for generic metrics in the free-boundary setting.
For Part I, see [the second and last author, “Min-max theory for free boundary minimal hypersurfaces. I: Regularity theory”, Preprint, arXiv:1611.02612].

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Almgren, FJ Jr, The homotopy groups of the integral cycle groups, Topology, 1, 257-299 (1962) · Zbl 0118.18503 · doi:10.1016/0040-9383(62)90016-2
[2] Almgren, FJ Jr, The Theory of Varifolds (1965), Princeton: Mimeographed Notes. Princeton University Press, Princeton
[3] Ambrozio, Lucas; Carlotto, Alessandro; Sharp, Ben, Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. Partial Differ. Equ., 57, 1, 57:22 (2018) · Zbl 1414.53008 · doi:10.1007/s00526-017-1281-y
[4] Chambers, GR; Liokumovich, Y., Existence of minimal hypersurfaces in complete manifolds of finite volume, Invent. Math., 219, 1, 179-217 (2020) · Zbl 1475.53066 · doi:10.1007/s00222-019-00903-3
[5] De Lellis, C.; Ramic, J., Min-max theory for minimal hypersurfaces with boundary, Ann. Inst. Fourier (Grenoble), 68, 5, 1909-1986 (2018) · Zbl 1408.53079 · doi:10.5802/aif.3200
[6] De Lellis, C.; Tasnady, D., The existence of embedded minimal hypersurfaces, J. Differ. Geom., 95, 3, 355-388 (2013) · Zbl 1284.53057 · doi:10.4310/jdg/1381931732
[7] Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969) · Zbl 0176.00801
[8] Fraser, A., On the free boundary variational problem for minimal disks, Commun. Pure Appl. Math., 53, 8, 931-971 (2000) · Zbl 1039.58013 · doi:10.1002/1097-0312(200008)53:8<931::AID-CPA1>3.0.CO;2-9
[9] Fraser, A.; Li, MM, Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary, J. Differ. Geom., 96, 2, 183-200 (2014) · Zbl 1295.53062 · doi:10.4310/jdg/1393424916
[10] Grüter, M., Optimal regularity for codimension one minimal surfaces with a free boundary, Manuscr. Math., 58, 295-343 (1987) · Zbl 0609.35012 · doi:10.1007/BF01165891
[11] Guang, Q., Wang, Z., Zhou, X.: Compactness and generic finiteness for free boundary minimal hypersurfaces (I). arXiv:1803.01509 (2018) · Zbl 1465.53073
[12] Irie, K.; Marques, F.; Neves, A., Density of minimal hypersurfaces for generic metrics, Ann. Math. (2), 187, 3, 963-972 (2018) · Zbl 1387.53083 · doi:10.4007/annals.2018.187.3.8
[13] Li, M., Zhou, X.: Min-max theory for free boundary minimal hypersurfaces I-regularity theory. J. Differ. Geom. arXiv:1611.02612 (2016)
[14] Liokumovich, Y.; Marques, F.; Neves, A., Weyl law for the volume spectrum, Ann. Math. (2), 187, 3, 933-961 (2018) · Zbl 1390.53034 · doi:10.4007/annals.2018.187.3.7
[15] Marques, FC; Neves, A., Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J., 161, 14, 2725-2752 (2012) · Zbl 1260.53079 · doi:10.1215/00127094-1813410
[16] Marques, FC; Neves, A., Min-max theory and the Willmore conjecture, Ann. Math. (2), 179, 2, 683-782 (2014) · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[17] Marques, FC; Neves, A., Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., 4, 4, 463-511 (2016) · Zbl 1367.49036 · doi:10.4310/CJM.2016.v4.n4.a2
[18] Marques, FC; Neves, A., Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math., 209, 2, 577-616 (2017) · Zbl 1390.53064 · doi:10.1007/s00222-017-0716-6
[19] Marques, F.C., Neves, A.: Morse index of multiplicity one min-max minimal hypersurfaces. arXiv:1803.04273 (2018) · Zbl 1465.53076
[20] Marques, FC; Neves, A.; Song, A., Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math., 216, 2, 421-443 (2019) · Zbl 1419.53061 · doi:10.1007/s00222-018-00850-5
[21] Montezuma, R., Min-max minimal hypersurfaces in non-compact manifolds, J. Differ. Geom., 103, 3, 475-519 (2016) · Zbl 1377.53081 · doi:10.4310/jdg/1468517502
[22] Morgan, F., Examples of unoriented area-minimizing surfaces, Trans. Am. Math. Soc., 283, 1, 225-237 (1984) · Zbl 0509.53007 · doi:10.1090/S0002-9947-1984-0735418-6
[23] Morgan, F., A regularity theorem for minimizing hypersurfaces modulo \(\nu \), Trans. Am. Math. Soc., 297, 1, 243-253 (1986) · Zbl 0641.49027
[24] Pitts, J.T.: Existence and regularity of minimal surfaces on Riemannian manifolds, volume 27 of Mathematical Notes. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, (1981) · Zbl 0462.58003
[25] Schoen, R.; Simon, L., Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., 34, 6, 741-797 (1981) · Zbl 0497.49034 · doi:10.1002/cpa.3160340603
[26] Sharp, B., Compactness of minimal hypersurfaces with bounded index, J. Differ. Geom., 106, 2, 317-339 (2017) · Zbl 1390.53065 · doi:10.4310/jdg/1497405628
[27] Simon, L.: Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra (1983) · Zbl 0546.49019
[28] Song, A.: Existence of infinitely many minimal hypersurfaces in closed manifolds. arXiv:1806.08816 (2018)
[29] Wang, Z.: Compactness and generic finiteness for free boundary minimal hypersurfaces (II). arXiv:1906.08485 (2019)
[30] White, B., The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J., 40, 1, 161-200 (1991) · Zbl 0742.58009 · doi:10.1512/iumj.1991.40.40008
[31] White, B., The maximum principle for minimal varieties of arbitrary codimension, Commun. Anal. Geom., 18, 3, 421-432 (2010) · Zbl 1226.53061 · doi:10.4310/CAG.2010.v18.n3.a1
[32] White, B., On the bumpy metrics theorem for minimal submanifolds, Am. J. Math., 139, 4, 1149-1155 (2017) · Zbl 1379.53084 · doi:10.1353/ajm.2017.0029
[33] Yau, S.T.: Problem section. In: Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pages 669-706. Princeton Univ. Press, Princeton, N.J. (1982) · Zbl 0471.00020
[34] Zhou, X., Min-max minimal hypersurface in \((M^{n+1}, g)\) with \(Ric>0\) and \(2 \le n\le 6\), J. Differ. Geom., 100, 1, 129-160 (2015) · Zbl 1331.53092 · doi:10.4310/jdg/1427202766
[35] Zhou, X., Min-max hypersurface in manifold of positive Ricci curvature, J. Differ. Geom., 105, 2, 291-343 (2017) · Zbl 1367.53054 · doi:10.4310/jdg/1486522816
[36] Zhou, X.: On the multiplicity one conjecture in min-max theory. Ann. Math. (to appear). arXiv:1901.01173 · Zbl 1461.53051
[37] Zhou, X.; Zhu, JJ, Min-max theory for constant mean curvature hypersurfaces, Invent. Math., 218, 2, 441-490 (2019) · Zbl 1432.53086 · doi:10.1007/s00222-019-00886-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.