×

Accelerated expansion of the universe based on emergence of space and thermodynamics of the horizon. (English) Zbl 1411.83165

Summary: Researches in the several decades have shown that the dynamics of gravity is closely related to thermodynamics of the horizon. In this paper, we derive the Friedmann acceleration equation based on the idea of “emergence of space” and thermodynamics of the Hubble horizon whose temperature is obtained from the unified first law of thermodynamics. Then, we derive another evolution equation of the universe based on the energy balance relation \(\rho V_H = T S\). Combining the two evolution equations and the equation of state of the cosmic matter, we obtain the evolution solutions of the FRW universe. We find that the solutions obtained by us include the solutions obtained in the standard general relativity (GR) theory. Therefore, it is more general to describe the evolution of the universe in the thermodynamic way.

MSC:

83F05 Relativistic cosmology

References:

[1] Perlmutter, S., Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 51 (1998)
[2] Perlmutter, S., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 565 (1999) · Zbl 1368.85002
[3] Riess, A. G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009 (1998)
[4] Riess, A. G., Type Ia supernova discoveries at \(z > 1\) from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J., 607, 665 (2004) · Zbl 1369.85001
[5] Riess, A. G., New Hubble Space Telescope discoveries of Type Ia supernovae at \(z \geqslant 1\): narrowing constraints on the early behavior of dark energy, Astrophys. J., 659, 98 (2007)
[6] Hicken, M., Improved dark energy constraints from ∼100 new CfA supernova Type Ia light curves, Astrophys. J., 700, 1097 (2009)
[7] Nojiri, S.; Odintsov, S. D., Modified \(f(R)\) gravity consistent with realistic cosmology: from matter dominated epoch to dark energy universe, Phys. Rev. D, 74, Article 086005 pp. (2006)
[8] Capozziello, S.; Nojiri, S.; Odintsov, S. D.; Troisi, A., Cosmological viability of \(f(R)\)-gravity as an ideal fluid and its compatibility with a matter dominated phase, Phys. Lett. B, 639, 135 (2006)
[9] Padmanabhan, T., Emergence and expansion of cosmic space as due to the quest for holographic equipartition
[10] Padmanabhan, T., Emergent perspective of gravity and dark energy, Res. Astron. Astrophys., 12, 891 (2012)
[11] Cai, R.-G., Emergence of space and spacetime dynamics of Friedmann-Robertson-Walker universe, J. High Energy Phys., 11, Article 016 pp. (2012) · Zbl 1397.83111
[12] Tu, F.-Q.; Chen, Y.-X., Emergence of spaces and the dynamic equations of FRW universes in the f(R) theory and deformed Horava-Lifshitz theory, J. Cosmol. Astropart. Phys., 05, Article 024 pp. (2013)
[13] Yang, K.; Liu, Y. X.; Wang, Y. Q., Emergence of cosmic space and the generalized holographic equipartition, Phys. Rev. D, 86, Article 10 pp. (2012)
[14] Jacobson, T., Thermodynamics of space: the Einstein equation of state, Phys. Rev. Lett., 75, 1260 (1995) · Zbl 1020.83609
[15] Padmanabhan, T., Classical and quantum thermodynamics of horizons in spherically symmetric space-times, Class. Quantum Gravity, 19, 5387 (2002) · Zbl 1011.83018
[16] Kothawala, D.; Sarkar, S.; Padmanabhan, T., Einstein’s equations as a thermodynamic identity: the cases of stationary axisymmetric horizons and evolving spherically symmetric horizon, Phys. Lett. B, 652, 338 (2006) · Zbl 1248.83024
[17] Paranjape, A.; Sarkar, S.; Padmanabhan, T., Thermodynamic route to Field equations in Lanczos-Lovelock gravity, Phys. Rev. D, 74, Article 104015 pp. (2006)
[18] Cai, R. G., Generalized Vaidya spacetime in Lovelock gravity and thermodynamics on the apparent horizon, Phys. Rev. D, 78, Article 124012 pp. (2008)
[19] Akbar, M.; Siddiqui, A. A., Charged rotating BTZ black hole and thermodynamic behavior of field equations at its horizon, Phys. Lett. B, 656, 217 (2007) · Zbl 1246.83091
[20] Akbar, M., Thermodynamic interpretation of Field equations at horizon of BTZ black hole, Chin. Phys. Lett., 24, 1158 (2007)
[21] Hayward, S. A., Gravitational energy in spherical symmetry, Phys. Rev. D, 53, 1938 (1996)
[22] Hayward, S. A., Unified first law of black-hole dynamics and relativistic thermodynamics, Class. Quantum Gravity, 15, 3147 (1998) · Zbl 0942.83040
[23] Hayward, S. A.; Mukhoyama, S.; Ashworth, M. C., Dynamic black-hole entropy, Phys. Lett. A, 256, 347 (1999)
[24] Hayward, S. A., Energy conservation for dynamical black holes, Phys. Rev. Lett., 93, Article 251101 pp. (2004)
[25] Mitra, S.; Saha, S.; Chakraborty, S., Universal thermodynamics in different gravity theories: modified entropy on the horizons, Phys. Lett. B, 734, 173 (2014) · Zbl 1380.80004
[26] Cai, R. G.; Kim, S. P., First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, J. High Energy Phys., 02, Article 050 pp. (2005)
[27] Gibbons, G. W.; Hawking, S. W., Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D, 15, 2738 (1977)
[28] Lohiya, D., Trace anomalies in a two-dimensional de Sitter metric and black-body radiation, J. Phys. A, 11, 1335 (1978)
[29] Akbar, M.; Cai, R.-G., Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe, Phys. Rev. D, 75, Article 084003 pp. (2007)
[30] Mitra, S.; Saha, S.; Chakraborty, S., Universal thermodynamics in different gravity theories: modified entropy on the horizons, Phys. Lett. B, 734, 173 (2014) · Zbl 1380.80004
[31] Akbar, M.; Cai, R. G., Thermodynamic behavior of Friedmann equation at apparent horizon of FRW universe, Phys. Rev. D, 75, Article 084003 pp. (2007)
[32] Easson, D. A.; Frampton, P. H.; Smoot, G. F., Entropic accelerating universe, Phys. Lett. B, 696, 273 (2011)
[33] Easson, D. A.; Frampton, P. H.; Smoot, G. F., Entropic inflation, Int. J. Mod. Phys. A, 27, Article 1250066 pp. (2012) · Zbl 1247.83258
[34] Koivisto, T. S.; Mota, D. F.; Zumalacarregui, M., Constraining entropic cosmology, J. Cosmol. Astropart. Phys., 02, Article 027 pp. (2011)
[35] Komatsu, N.; Kimura, S., Non-adiabatic-like accelerated expansion of the late universe in entropic cosmology, Phys. Rev. D, 87, Article 043531 pp. (2013)
[36] Tu, F.-Q.; Chen, Y.-X., Emergence of space and cosmic evolution based on entropic force, Gen. Relativ. Gravit., 47, 87 (2015) · Zbl 1327.83243
[37] Padmanabhan, T., Do we really understand the cosmos?, C. R. Phys., 18, 275 (2017)
[38] Zimdahl, W., Bulk viscous cosmology, Phys. Rev. D, 53, 5483 (1996)
[39] Colistete, R.; Fabris, J. C.; Tossa, J.; Zimdahl, W., Bulk viscous cosmology, Phys. Rev. D, 76, Article 103516 pp. (2007)
[40] Brevik, I., Viscous cosmology, entropy, and the Cardy-Verlinde formula, (Horizons in World Physics, vol. 246 (2005)), 165
[41] Brevik, I.; Gorbunova, O., Dark energy and viscous cosmology, Gen. Relativ. Gravit., 37, 2039 (2005) · Zbl 1093.83046
[42] Avelino, A.; Nucamendi, U., Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?, J. Cosmol. Astropart. Phys., 04, Article 006 pp. (2009)
[43] Carneiro, S.; Pigozzo, C.; Borges, H. A., Supernova constraints on decaying vacuum cosmology, Phys. Rev. D, 74, Article 023532 pp. (2006)
[44] Alcaniz, J. S.; Borges, H. A.; Carneiro, S.; Fabris, J. C.; Pigozzo, C.; Zimdahl, W., A cosmological concordance model with dynamical vacuum term, Phys. Lett. B, 716, 165 (2012)
[45] Pigozzo, C.; Dantas, M. A.; Carneiro, S.; Alcaniz, J. S., Observational tests for \(\Lambda(t)\) CDM cosmology, J. Cosmol. Astropart. Phys., 08, Article 022 pp. (2011)
[46] Fritzsch, H.; Sola, J., Matter non-conservation in the universe and dynamical dark energy, Class. Quantum Gravity, 29, Article 215002 pp. (2012) · Zbl 1266.83187
[47] de Sitter, W., On the relativity of inertia: remarks concerning Einstein’s latest hypothesis, Proc. K. Ned. Acad. Wet., 19, 1217 (1917)
[48] de Sitter, W., On the curvature of space, Proc. K. Ned. Acad. Wet., 20, 229 (1917)
[49] Sato, K., Cosmology I, Modern Astronomy Series, vol. 2 (2008), Nippon Hyoron Sha Co.
[50] Carroll, S. M.; Press, W. H., The cosmological constant, Annu. Rev. Astron. Astrophys., 30, 499 (1992)
[51] Jarosik, N., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors, and basic results, Astrophys. J. Suppl. Ser., 192, 14 (2011)
[52] Komatsu, E., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. Ser., 192, 18 (2011)
[53] Weinberg, S., Cosmology (2008), Oxford University Press · Zbl 1147.83002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.