×

A model of interacting dark fluids tested with supernovae and Baryon Acoustic Oscillations data. (English) Zbl 1414.83103

Summary: We compare supernovae and Baryon Acoustic Oscillations data to the predictions of a cosmological model of interacting dark matter and dark energy. This theoretical model can be derived from the effective field theory of Einstein-Cartan gravity with two scaling exponents \(\delta_G\) and \(\delta_{\Lambda}\), related to the interaction between dark matter and dark energy. We perform a \(\chi^2\) fit to the data to compare and contrast it with the standard \({\Lambda}\mathrm{CDM}\) model. We then explore the range of parameter of the model which gives a better \(\chi^2\) than the standard cosmological model. All those results lead to tight constraints on the scaling exponents of the model. Our conclusion is that this class of models, provides a decent alternative to the \({\Lambda}\mathrm{CDM}\) model.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Riess, A. G., Astron. J., 116, 1009 (1998)
[2] Perlmutter, S., Astrophys. J., 517, 565 (1999)
[3] Ade, P. A.R., Astron. Astrophys., 594, A13 (2016)
[4] Tsujikawa, S., Class. Quantum Gravity, 30, Article 214003 pp. (2013) · Zbl 1277.83012
[5] Buchert, T., Gen. Relativ. Gravit., 40, 467 (2008) · Zbl 1137.83375
[6] Bolejko, K.; Celerier, M.-N.; Krasinski, A., Class. Quantum Gravity, 28, Article 164002 pp. (2011) · Zbl 1225.83020
[7] Stahl, C., Int. J. Mod. Phys. D, 25, Article 1650066 pp. (2016)
[8] Joyce, A.; Jain, B.; Khoury, J.; Trodden, M., Phys. Rep., 568, 1 (2015)
[9] Frieman, J. A.; Gradwohl, B.-A., Phys. Rev. Lett., 67, 2926 (1991)
[10] Gradwohl, B.-A.; Frieman, J. A., Astrophys. J., 398, 407 (1992)
[11] Wetterich, C., Astron. Astrophys., 301, 321 (1995)
[12] Amendola, L., Phys. Rev. D, 62, Article 043511 pp. (2000)
[13] Amendola, L., Phys. Rev. D, 69, Article 103524 pp. (2004)
[14] Lee, S.; Liu, G.-C.; Ng, K.-W., Phys. Rev. D, 73, Article 083516 pp. (2006)
[15] Pettorino, V.; Baccigalupi, C., Phys. Rev. D, 77, Article 103003 pp. (2008)
[16] Valiviita, J.; Majerotto, E.; Maartens, R., J. Cosmol. Astropart. Phys., 0807, Article 020 pp. (2008)
[17] He, J.-H.; Wang, B., J. Cosmol. Astropart. Phys., 0806, Article 010 pp. (2008)
[18] Gavela, M. B.; Hernandez, D.; Lopez Honorez, L.; Mena, O.; Rigolin, S., J. Cosmol. Astropart. Phys.. J. Cosmol. Astropart. Phys., J. Cosmol. Astropart. Phys., 1005, Article E01 pp. (2010), Erratum:
[19] Faraoni, V.; Dent, J. B.; Saridakis, E. N., Phys. Rev. D, 90, Article 063510 pp. (2014)
[20] Salvatelli, V.; Said, N.; Bruni, M.; Melchiorri, A.; Wands, D., Phys. Rev. Lett., 113, Article 181301 pp. (2014)
[21] Xue, S.-S., Nucl. Phys. B, 897, 326 (2015) · Zbl 1329.83053
[22] Ferreira, E. G.M.; Quintin, J.; Costa, A. A.; Abdalla, E.; Wang, B., Phys. Rev. D, 95, Article 043520 pp. (2017)
[23] Koivisto, T. S.; Saridakis, E. N.; Tamanini, N., J. Cosmol. Astropart. Phys., 1509, Article 047 pp. (2015)
[24] Kumar, S.; Nunes, R. C., Phys. Rev. D, 94, Article 123511 pp. (2016)
[25] Kumar, S.; Nunes, R. C., Phys. Rev. D, 96, Article 103511 pp. (2017)
[26] Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavon, D., Rep. Prog. Phys., 79, Article 096901 pp. (2016)
[27] Murgia, R.; Gariazzo, S.; Fornengo, N., J. Cosmol. Astropart. Phys., 1604, Article 014 pp. (2016)
[28] Koyama, K.; Maartens, R.; Song, Y.-S., J. Cosmol. Astropart. Phys., 0910, Article 017 pp. (2009)
[29] Xue, S.-S., Int. J. Mod. Phys. A, 30, Article 1545003 pp. (2015)
[30] Solà, J.; Gómez-Valent, A.; de Cruz Pérez, J., Astrophys. J., 836, 43 (2017)
[31] Novikov, E. A., Mod. Phys. Lett. A, 31, Article 1650092 pp. (2016)
[32] Novikov, E. A., Electron. J. Theor. Phys., 13, 79 (2016)
[33] Weinberg, S., Understanding the Fundamental Constituents of Matter (1977), Plenum Press: Plenum Press New York
[34] Suzuki, N., Astrophys. J., 746, 85 (2012)
[35] Amendola, L.; Tocchini-Valentini, D., Phys. Rev. D, 66, Article 043528 pp. (2002)
[36] Peracaula, J. S.; Gomez-Valent, A.; Perez, J.d. C. (2018)
[37] Kazin, E. A., Mon. Not. R. Astron. Soc., 441, 3524 (2014)
[38] Gil-Marín, H.; Percival, W. J.; Verde, L.; Brownstein, J. R.; Chuang, C.-H.; Kitaura, F.-S.; Rodríguez-Torres, S. A.; Olmstead, M. D., Mon. Not. R. Astron. Soc., 465, 1757 (2017)
[39] Gil-Marín, H., Mon. Not. R. Astron. Soc., 477, 1604 (2018)
[40] Carter, P.; Beutler, F.; Percival, W. J.; Blake, C.; Koda, J.; Ross, A. J. (2018)
[41] Williams, J. G.; Turyshev, S. G.; Boggs, D. H., Phys. Rev. Lett., 93, 261101 (2004)
[42] Grande, J.; Sola, J.; Fabris, J. C.; Shapiro, I. L., Class. Quantum Gravity, 27, Article 105004 pp. (2010) · Zbl 1190.83119
[43] Solà Peracaula, J.; de Cruz Pérez, J.; Gómez-Valent, A., Europhys. Lett., 121, Article 39001 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.