×

Asymptotic de Sitter inflation in different geometric backgrounds. (English) Zbl 07830870

Summary: In this paper, we will show that a power law asymptotic de Sitter inflation will be established for all values of Hankel indices \(\nu\) that relate to the different background spacetimes of the universe in their evolution. First, we calculate the relations for the Hubble, deceleration, slow roll and the equation of state parameters in terms of the Hankel function index \(\nu\). We then show that the obtained relations and figures correspond to the conventional limit conditions for pure de Sitter inflation. As an important result, power law quasi-de Sitter inflation is more likely to occur after exponential pure de Sitter inflation. Also, in the proposed model, the universe can always be in the accelerating expansion phase for all values of index \(\nu\).

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
Full Text: DOI

References:

[1] D. Baumann, TASI lectures on inflation, arXiv:hep-th/0907.5424v2.
[2] D. Baumann, TASI lectures on primordial cosmology, arXiv:hep-th/1807.03098.
[3] A. R. Liddle, An introduction to cosmological inflation, arXiv:astro-ph/9901124v1.
[4] Y. Akrami et al., Planck Collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:astro-ph/1807.06211.
[5] Armendariz-Picon, C. and Lim, E. A., Vacuum choices and the predictions of inflation, J. Cosmol. Astropart. Phys.312 (2003) 006, arXiv:hep-th/0303103.
[6] Xue, W. and Chen, B., \( \alpha \)-Vacuum and inflationary bispectrum, Phys. Rev. D79 (2009) 043518, arXiv:hep-th/0806.4109.
[7] Kundu, S., Inflation with general initial conditions for scalar perturbations, J. Cosmol. Astropart. Phys.1202 (2012) 005, arXiv:astro-ph/1110.4688.
[8] Yusofi, E. and Mohsenzadeh, M., Non-linear trans-Planckian corrections of spectra due to the non-trivial initial states, Phys. Lett. B737 (2014) 261. · Zbl 1380.83011
[9] Yusofi, E. and Mohsenzadeh, M., Scale-dependent power spectrum from initial excited-de Sitter modes, J. High Energy Phys.9 (2014) 020, arXiv:astro-ph/1402.6968. · Zbl 1333.83285
[10] Bunch, T. S. and Davies, P. C. W., Quantum field theory in de Sitter space — Renormalization by point-splitting, Proc. R. Soc. Lond. A117 (1978) 360.
[11] Yusofi, E. and Mohsenzadeh, M., An asymptotic method for selection of inflationary modes, Modern Phys. Lett. A30(9) (2015) 1550041. · Zbl 1311.83082
[12] Mohsenzadeh, M., Tanhayi, M. R. and Yusofi, E., Power spectrum with auxiliary fields in de Sitter space-time, Eur. Phys. J. C74 (2014) 2920, https://doi.org/10.1140/epjc/s10052-014-2920-5, arXiv:hep-th/1306.6722. · Zbl 1335.83025
[13] Mohsenzadeh, M. and Yusofi, E., Higher order corrections to asymptotic-de Sitter inflation, Chin. Phys. C41(8) (2017) 085101, arXiv:gr-qc/1606.03886. · Zbl 1395.83148
[14] Sojasi, A., Yusofi, E. and Mohsenzadeh, M., Asymptotic-de Sitter inflation in the light of the Planck data, Chin. Phys. C42(11) (2018) 115102. · Zbl 1274.83044
[15] Yusofi, E., Equation of state and background geometry for the accelerating universe, Modern Phys. Lett. A33(37) (2018) 1850219. · Zbl 1404.83003
[16] Sojasi, A., Mohsenzadeh, M. and Yusofi, E., Large angular scale CMB anisotropy from an excited initial mode, Chin. Phys. C40(7) (2016) 075101.
[17] Mohsenzadeh, M.et al., Particle creation with excited de Sitter modes, Can. J. Phys.93 (2015) 1466-1469.
[18] Yusofi, E. and Mohsenzadeh, M., Non-minimal particle creation from asymptotic-de Sitter inflation, Internat. J. Theoret. Phys.57 (2018) 1622-1630. · Zbl 1395.83148
[19] Ziyaee, A. R., Mohsenzadeh, M. and Yusofi, E., A covariant approach for particle creation in non-flat background, Internat. J. Theoret. Phys.59 (2020) 3985-3994. · Zbl 1465.83028
[20] Lucchin, F. and Matarrese, S., Power-law inflation, Phys. Rev. D32 (1985) 1316.
[21] Stewart, E. D. and Lyth, D. H., A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, Phys. Lett. B302 (1993), arXiv:gr-qc/9302019.
[22] Lizi, F.et al., Cosmological perturbations and short distance physics from noncommutative Geometry, J. High Energy Phys.0206 (2002) 049, arXiv:hep-th/0203099.
[23] Hwang, J. and Noh, H., Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyon: Unified analyses, Phys. Rev. D71 (2005) 063536, arXiv:gr-qc/0412126.
[24] Mijic, M., Particle production and classical condenstates in de Sitter space, Phys. Rev. D57 (1998) 2138, arXiv:gr-qc/9801094v1.
[25] Pereira, S. H., Bessa, C. H. G. and Lima, J. A. S., Quantized fields and gravitational particle creation in \(f(R)\) expanding universes, Phys. Lett. B690 (2010) 103.
[26] Nezhad, H. Bouzari and Shojai, F., The effect of \(\alpha \)-vacua on the scalar and tensor spectral indices: Slow-roll approximation, Phys. Rev. D98 (2018) 063512, arXiv:gr-qc/1802.05537.
[27] A. Guth, Eternal inflation, arXiv:astro-ph/0101507.
[28] Borde, E. and Vilenkin, A., Eternal inflation and the initial singularity, Phys. Rev. Lett.72 (1994) 3305-3309, arXiv:gr-qc/9312022.
[29] Nojiri, S.et al., Non-singular bounce cosmology from lagrange multiplier \(f(R)\) gravity, Phys. Rev. D100(8) (2019) 084056, arXiv:gr-qc/1910.03546.
[30] Elizalde, E.et al., Extended matter bounce scenario in ghost free \(f(R,g)\) gravity compatible with GW170817, Nuclear Phys. B954 (2020) 114984, arXiv:gr-qc/2003.04264. · Zbl 1473.83024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.