×

Nonlinear dynamic analysis of symmetric and antisymmetric cross-ply laminated orthotropic thin shells. (English) Zbl 1367.74035

Summary: In this paper, the governing equations for nonlinear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin’s method, these equations are reduced to a time-dependent nonlinear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the nonlinear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases.

MSC:

74K25 Shells
74H45 Vibrations in dynamical problems in solid mechanics
74E30 Composite and mixture properties
74E10 Anisotropy in solid mechanics
Full Text: DOI

References:

[1] Hui D, Du IHY (1986) Effects of axial imperfections on vibrations of anti-symmetrical cross-ply, oval cylindrical-shells. J Appl Mech 53:675-680 · Zbl 0597.73057 · doi:10.1115/1.3171830
[2] Hui D (1988) Effects of shear loads on vibration and buckling of antisymmetric cross-ply cylindrical panels. Int J Non-Linear Mech 23:177-187 · Zbl 0638.73017 · doi:10.1016/0020-7462(88)90010-8
[3] Kayran A, Vinson JR (1990) Free vibration analysis of laminated composite truncated circular conical shells. AIAA J 28:1259-1269 · doi:10.2514/3.25203
[4] Tong L (1993) Free vibration of composite laminated conical shells. Int J Mech Sci 35(1):47-61 · Zbl 0825.73343 · doi:10.1016/0020-7403(93)90064-2
[5] Shu C (1996) Free vibration analysis of composite laminated conical shells by generalized differential quadrature. J Sound Vib 194(4):587-604 · Zbl 1232.74034 · doi:10.1006/jsvi.1996.0379
[6] Lim CW, Liew KM, Kitipornchai S (1998) Vibration of cantilevered laminated composite shallow conical shells. Int J Solids Struct 35:1695-1707 · Zbl 0934.74032 · doi:10.1016/S0020-7683(97)00157-1
[7] Wu CP, Wu CH (2000) Asymptotic differential quadrature solutions for the free vibration of laminated conical shells. Comput Mech 25:346-357 · Zbl 0967.74028 · doi:10.1007/s004660050482
[8] Aksogan, O.; Sofiyev, AH; Zerin, Z., The dynamic stability of a laminated non-homogeneous elastic cylindrical shell, Istanbul
[9] Hua L, Lam KY (2001) Orthotropic influence on frequency characteristics of a rotating composite laminated conical shell by the generalized differential quadrature method. Int J Solids Struct 38:3995-4015 · Zbl 0969.74619 · doi:10.1016/S0020-7683(00)00272-9
[10] Hu HT, Ou SC (2001) Maximizations of fundamental frequency of laminated truncated conical shells with respect to fiber orientation. Compos Struct 52:265-275 · doi:10.1016/S0263-8223(01)00019-8
[11] Wu CP, Lee CY (2001) Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. Int J Mech Sci 43:1853-1869 · Zbl 1048.74603 · doi:10.1016/S0020-7403(01)00010-8
[12] Correia IFP, Mota Soares CM, Mota Soares CA, Hreskovits J (2003) Analysis of laminated conical shell structures using higher order models. Compos Struct 62:383-390 · doi:10.1016/j.compstruct.2003.09.009
[13] Ng TY, Li H, Lam KY (2003) Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions. Int J Mech Sci 45:567-587 · Zbl 1116.74439 · doi:10.1016/S0020-7403(03)00042-0
[14] Civalek Ö (2006) Free vibration analysis of composite conical shells using the discrete singular convolution algorithm. Steel Compos Struct 6:353-366 · doi:10.12989/scs.2006.6.4.353
[15] Liang S, Chen HL, Chen T, Wang MY (2007) The natural vibration of a symmetric cross-ply laminated composite conical-plate shell. Compos Struct 80:265-278 · doi:10.1016/j.compstruct.2006.05.014
[16] Aksogan, O.; Sofiyev, AH; Sofiyev, A., Free vibrations of cross-ply laminated non-homogeneous composite truncated conical shells, No. 111, 21-26 (2007) · doi:10.1007/978-1-4020-5401-3_5
[17] Tornabene F, Viola E (2009) Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44:255-281 · Zbl 1254.74056 · doi:10.1007/s11012-008-9167-x
[18] Sofiyev AH, Karaca Z (2009) The vibration and stability of laminated non-homogeneous orthotropic conical shells subjected to external pressure. Eur J Mech A, Solids 28:317-328 · Zbl 1156.74334 · doi:10.1016/j.euromechsol.2008.06.002
[19] Sofiyev AH, Kuruoglu N (2011) Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation. Composites, Part B, Eng 42:1562-1570 · doi:10.1016/j.compositesb.2011.04.015
[20] Viswanathan KK, Lee JH, Aziz ZA, Hossain I, Wang R, Abdullah HY (2012) Vibration analysis of cross-ply laminated truncated conical shells using a spline method. J Eng Math 76:139-156 · doi:10.1007/s10665-011-9525-x
[21] Omidi M, Alaie S, Rousta A (2012) Analysis of the vibrational behavior of the composite cylinders reinforced with non-uniform distributed carbon nanotubes using micro-mechanical approach. Meccanica 47:817-833 · Zbl 1284.74046 · doi:10.1007/s11012-011-9450-0
[22] Yildirim V (2012) On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion. Meccanica 47:1015-1033 · Zbl 1284.74047 · doi:10.1007/s11012-011-9492-3
[23] Qatu MS, Asadi E (2013) Free vibration of thick laminated cylindrical shells with different boundary conditions using general differential quadrature. J Vib Control 19(3):356-366 · doi:10.1177/1077546311432000
[24] Civalek Ö (2013) Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory. Composites, Part B, Eng 45:1001-1009 · doi:10.1016/j.compositesb.2012.05.018
[25] Najafov AM, Sofiyev AH, Kuruoglu N (2013) Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48:829-840 · Zbl 1293.74193 · doi:10.1007/s11012-012-9636-0
[26] Zerin Z (2013) On the vibration of laminated non-homogeneous orthotropic shells. Meccanica 48:1557-1572 · Zbl 1293.74218 · doi:10.1007/s11012-012-9684-5
[27] Hui D, Du IHY (1987) Initial postbuckling behavior of imperfect, antisymmetric cross-ply cylindrical-shells under torsion. J Appl Mech 54:174-180 · Zbl 0604.73053 · doi:10.1115/1.3172954
[28] Xu CS, Xian ZQ, Chia CY (1995) Nonlinear theory and vibration analysis of laminated truncated thick conical shells. Int J Non-Linear Mech 16:139-154 · Zbl 0861.73043
[29] Liu RH, Li J (1995) Nonlinear vibration of shallow conical sandwich shells. Int J Non-Linear Mech 30:97-109 · Zbl 0820.73045 · doi:10.1016/0020-7462(94)00032-6
[30] Lakis AA, Selmane A, Toledano A (1998) Non-linear free vibration analysis of laminated orthotropic cylindrical shells. Int J Mech Sci 40:27-49 · Zbl 0901.73043 · doi:10.1016/S0020-7403(97)00029-5
[31] Gonçalves PB, Del Prado ZJGN (2002) Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37:569-597 · Zbl 1100.74557 · doi:10.1023/A:1020972109600
[32] Sofiyev AH, Aksogan O (2003) Nonlinear free vibration analysis of laminated non-homogenous orthotropic cylindrical shells. Proc Inst Mech Eng, Proc, Part K, J Multi-Body Dyn 217(4):293-300
[33] Civalek Ö (2005) Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of HDQ-FD methods. Int J Press Vessels Piping 82:470-479 · doi:10.1016/j.ijpvp.2004.12.003
[34] Naidu NVS, Sinha PK (2007) Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Compos Struct 77:475-483 · doi:10.1016/j.compstruct.2005.08.002
[35] Shariyat M (2012) A general nonlinear global-local theory for bending and buckling analyses of imperfect cylindrical laminated and sandwich shells under thermomechanical loads. Meccanica 47:301-319 · Zbl 1293.74299 · doi:10.1007/s11012-011-9438-9
[36] Sofiyev AH, Kuruoglu N (2011) The non-linear buckling analysis of cross-ply laminated orthotropic truncated conical shells. Compos Struct 93:3006-3012 · doi:10.1016/j.compstruct.2011.04.035
[37] Shen HS (2013) Boundary layer theory for the nonlinear vibration of anisotropic laminated cylindrical shells. Compos Struct 97:338-352 · doi:10.1016/j.compstruct.2012.10.027
[38] Panda SK, Mahapatra TR (2013) Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading. Meccanica. doi:10.1007/s11012-013-9785-9 · Zbl 1347.74088 · doi:10.1007/s11012-013-9785-9
[39] Reddy JN (2004) Mechanics of laminated composite plates and shells, theory and analysis, 2nd edn. CRC Press, New York · Zbl 1075.74001
[40] Qatu MS (2004) Vibration of laminated shells and plates. Elsevier, San Diego
[41] Agamirov VL (1990) Dynamic problems of nonlinear shells theory. Nauka, Moscow (in Russian) · Zbl 0721.73023
[42] Sofiyev AH (2012) The non-linear vibration of FGM truncated conical shells. Compos Struct 94:2237-2245 · Zbl 1278.60082 · doi:10.1016/j.compstruct.2012.02.005
[43] Sofiyev AH, Kuruoglu N (2013) Large-amplitude vibration of the geometrically imperfect FGM truncated conical shell. J Vib Control. doi:10.1177/1077546313480998 · doi:10.1177/1077546313480998
[44] Sofiyev AH (2013) Large-amplitude vibration of non-homogeneous orthotropic composite truncated conical shell. Composites, Part B, Eng. doi:10.1016/j.compositesb.2013.06.040 · doi:10.1016/j.compositesb.2013.06.040
[45] He JH (2008) An improved amplitude-frequency formulation for nonlinear oscillators. Int J Nonlinear Sci Numer Simul 9:211-212
[46] Nowinski JL (1963) Nonlinear transverse vibrations of orthotropic cylindrical shells. AIAA J 1:617-620 · doi:10.2514/3.1604
[47] Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Polit O (2011) Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Composites, Part B, Eng 42:1276-1284 · doi:10.1016/j.compositesb.2011.01.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.