×

Normal spectral approximation in \(C^*\)-algebras and in von Neumann-algebras. (English) Zbl 0851.46039

Summary: The general problem of normal spectral approximation in a unital \(C^*\)-algebra \({\mathcal A}\) is studied. If \(\Delta\) is a closed and convex subset of the complex plane then the distance from a normal element \(a\) of \({\mathcal A}\) to the set \({\mathcal N}_{\mathcal A} (\Delta)\) of all normal elements with spectrum in \(\Delta\) equals the one-sided Hausdorff distance from \(\sigma (a)\) to \(\Delta\). As a consequence every normal element \(a\) has an \({\mathcal N}_{\mathcal A} (\Delta)\)-approximant which is a function of \(a\). Furthermore the approximant is unique whenever every point of \(\sigma (a)\) has the same distance to \(\Delta\). These results are shown for the approximation in the \(C^*\)-norm as well as in another topological equivalent norm.

MSC:

46L05 General theory of \(C^*\)-algebras
46L10 General theory of von Neumann algebras
Full Text: DOI

References:

[1] Ando, T.; Sekiguchi, T.; Suzuki, T., Approximation by positive operators, Math. Zeitschrift, 131, 273-282 (1973) · Zbl 0243.47026 · doi:10.1007/BF01174903
[2] Berberian, St. K., Approximate proper vector, Proc. Amer. Math. Soc., 13, 111-114 (1962) · Zbl 0166.40503 · doi:10.2307/2033783
[3] [Be 1] Berntzen R.,Spectral approximation of normal operators, Acta Sci. Math. (Szeged) 61 (1995). · Zbl 0848.47012
[4] Berntzen, R., Extreme points in the set of normal spectral approximants, Acta Sci. Math. (Szeged), 59, 143-161 (1994) · Zbl 0802.47012
[5] Bouldin, R., Positive approximants, Trans. Amer. Math. Soc., 177, 391-403 (1973) · Zbl 0264.47020 · doi:10.2307/1996605
[6] Bouldin, R., Operators with a unique positive near-approximant, Indiana Univ. Math. J., 23, 421-427 (1973) · Zbl 0269.47010 · doi:10.1512/iumj.1973.23.23034
[7] Bouldin, R., The convex structure of the set of all positive approximants for a given operator, Acta Sci. Math. (Szeged), 37, 177-190 (1975) · Zbl 0308.47019
[8] Bouldin, R., Self-adjoint approximants, Indiana Univ. Math. J., 27, 299-307 (1978) · Zbl 0376.47013 · doi:10.1512/iumj.1978.27.27023
[9] Bouldin, R., Spectral approximants of a normal operator, Proc. Amer. Math. Soc., 76,2, 279-284 (1979) · Zbl 0458.47016 · doi:10.2307/2043003
[10] Chui, C. K.; Smith, P. W.; Ward, J. D., Approximation with restricted spectra, Math. Zeitschrift, 144, 289-297 (1975) · Zbl 0295.47028 · doi:10.1007/BF01214143
[11] Halmos, P. R., Positive approximants of operators, Indiana Univ. Math. J., 21, 951-960 (1972) · Zbl 0263.47018 · doi:10.1512/iumj.1972.21.21076
[12] Halmos, P. R., Spectral approximants of normal operators, Proc. Edinburgh Math. Soc., 19, 51-58 (1974) · Zbl 0274.47016 · doi:10.1017/S0013091500015364
[13] Halmos, P. R., A Hilbert space problem book (1982), New York: Springer Verlag, New York · Zbl 0496.47001
[14] Pedersen, G. K., C^*-algebras and their automorphism groups (1989), London-New York: Academic Press, London-New York
[15] Pedersen, G. K., Analysis now (1989), New York: Springer Verlag, New York · Zbl 0668.46002
[16] Rogers, D. D., On proximal sets of normal operators, Proc. Amer. Math. Soc., 61,1, 44-48 (1976) · Zbl 0345.47018 · doi:10.2307/2041660
[17] Rudin, W., Functional analysis (1971), New York: McGraw-Hill, New York
[18] Sekiguchi, T., Positive approximants of normal operators, Hokkaido Math. J., 5, no. 1, 270-279 (1976) · Zbl 0331.47004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.