×

Lacunary Müntz systems. (English) Zbl 0790.41019

The classical theorem of Müntz and Szász says that if \(\Lambda:= \{\lambda_ i\}^ \infty_{i=0}\), \(0=\lambda_ 0<\lambda_ 1<\cdots\) then \(M(\Lambda):=\text{span}\{x^{\lambda_ 0},x^{\lambda_ 1},\dots\}\) is dense in \(C[0,1]\) in the uniform norm if and only if \(\sum^ \infty_{i=1} \lambda^{-1}_ i=\infty\). This paper proves that if \(\Lambda\) is lacunary, that is \(\inf\{\lambda_{i+1}/\lambda_ i: i\in\mathbb{N}\}>1\) and \(A\subset [0,1]\) is of positive Lebesgue measure then \(M(\Lambda)\) fails to be dense in \(C[A]\) in the uniform norm. The key to the proof is the establishment of a bounded Remez-type inequality for lacunary Müntz spaces. This states that there is a constant \(c\) depending only on \(\varepsilon\) and \(\widetilde\lambda:=\inf\{\lambda_{i+1}/\lambda_ i: i\in\mathbb{N}\}>1\) (and not on \(n\) and \(A\)) so that \(| p(0)|\leq c\sup_{x\in A}| p(x)|\) for every \(p\in M(\Lambda)\) and \(A\subset [0,1]\) of Lebesgue measure at least \(\varepsilon>0\).
Reviewer: P.Borwein

MSC:

41A50 Best approximation, Chebyshev systems
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
Full Text: DOI

References:

[1] Cheney, Introduction to Approximation Theory (1966) · Zbl 0161.25202
[2] Borwein, Canad. Math. Bull. 34 pp 305– (1991) · Zbl 0758.41027 · doi:10.4153/CMB-1991-050-8
[3] Borwein, Progress in Approximation Theory pp 419– (1992) · doi:10.1007/978-1-4612-2966-7_18
[4] DOI: 10.1016/0021-9045(90)90113-5 · Zbl 0733.41012 · doi:10.1016/0021-9045(90)90113-5
[5] DOI: 10.2307/2043514 · Zbl 0476.30030 · doi:10.2307/2043514
[6] DOI: 10.2307/2042578 · Zbl 0404.41002 · doi:10.2307/2042578
[7] DOI: 10.1215/S0012-7094-43-01002-6 · Zbl 0063.00919 · doi:10.1215/S0012-7094-43-01002-6
[8] Newman, Regional Conference Series in Mathematics 41 (1978)
[9] DOI: 10.1016/0021-9045(76)90007-1 · Zbl 0441.41002 · doi:10.1016/0021-9045(76)90007-1
[10] DOI: 10.2307/1969553 · Zbl 0034.37402 · doi:10.2307/1969553
[11] DOI: 10.1016/0021-9045(83)90083-7 · Zbl 0535.41012 · doi:10.1016/0021-9045(83)90083-7
[12] Feinerman, Polynomial Approximation (1976)
[13] DOI: 10.1112/jlms/s2-45.2.255 · Zbl 0757.41023 · doi:10.1112/jlms/s2-45.2.255
[14] Schwartz, Etude des Sommes d’Exponentielles (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.