×

The Landau-Kolmogorov problem on a finite interval in the Taikov case. (English) Zbl 1508.41004

Let \(n\in\mathbb{N}\), \(\sigma>0\) and let \(\|\cdot\|_2\) denote the \(L^2\)-norm on \([-1,1]\). The author find an exact bound for \(|f^{(k)}(t)|\), \(k < n\), under constraints \(\|f\|_2\leq 1\) and \(\|f^{(n)}\|_2\leq \sigma\), where \(t\in [-1,1]\) is fixed. Then, for \(n=1\) and \(n=2\), the Landau-Kolmogorov problem on the interval \([-1,1]\) in the Taikov case is solved by proving the Karlin-type conjecture. Furthermore, the smallest possible constant \(A>0\) and the smallest possible constant \(B=B(A)\) in the inequality \(\|f^{(k)}\|_{\infty}\leq A\|f\|_2 + B\|f^{(n)}\|_2\) for \(k\in \{n - 2,n - 1\}\) are found.

MSC:

41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
26D10 Inequalities involving derivatives and differential and integral operators
34B24 Sturm-Liouville theory
41A35 Approximation by operators (in particular, by integral operators)

References:

[1] Arestov, V., Approximation of unbounded operators by bounded operators and related extremal problems, Russ. Math. Surv.. Russ. Math. Surv., Usp. Mat. Nauk, 51, 6, 89-124-1126 (1996), translation from · Zbl 0947.41019
[2] Arestov, V., Uniform approximation of differentiation operators by bounded linear operators in the space \(L_r\), Anal. Math., 46, 425-445 (2020) · Zbl 1474.41035
[3] Babenko, Y., Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment, Ukr. Math. J., 53, 2, 270-275 (2001) · Zbl 0984.26004
[4] Babenko, V.; Babenko, Y.; Kriachko, N.; Skorokhodov, D., On the Hardy-Littlewood-Pólya and Taikov type inequalities for multiple operators in Hilbert spaces, Anal. Math., 47, 709-745 (2021) · Zbl 1495.47035
[5] Babenko, V.; Kofanov, V.; Pichugov, S., On additive inequalities for intermediate derivatives of functions given on a finite interval, Ukr. Math. J., 49, 5, 685-696 (1997) · Zbl 0935.26004
[6] Babenko, V.; Korneichuk, N.; Kofanov, V.; Pichugov, S., Inequalities for Derivatives and their Applications, 591 (2003), Naukova Dumka, Kyiv, (in Russian)
[7] Bojanov, B.; Naidenov, N., Examples of Landau-Kolmogorov inequality in integral norms on a finite interval, J. Approx. Theory, 117, 1, 55-73 (2002) · Zbl 1019.41009
[8] Borwein, P.; Erdelýi, T., (Polynomials and Polynomial Inequalities. Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, vol. 161 (1995), Springer), 490 · Zbl 0840.26002
[9] Burenkov, V., Exact constants in inequalities for norms of intermediate derivatives on a finite interval, Proc. Steklov Inst. Math.. Proc. Steklov Inst. Math., Tr. Mat. Inst. Steklova, 156, 22-29-30 (1980), translation from · Zbl 0455.46023
[10] Burenkov, V., Exact constants in inequalities for norms of intermediate derivatives on a finite interval. II, Proc. Steklov Inst. Math.. Proc. Steklov Inst. Math., Tr. Mat. Inst. Steklova, 173, 38-49-50 (1986), translation from · Zbl 0643.46023
[11] Burenkov, V.; Gusakov, V., On sharp constants in inequalities for the modulus of a derivative, Proc. Steklov Inst. Math.. Proc. Steklov Inst. Math., Tr. Mat. Inst. Steklova, 243, 104-126-119 (2003), translation from · Zbl 1076.26012
[12] Chui, C.; Smith, P., A note on Landau’s problem for bounded intervals, Amer. Math. Monthly, 82, 9, 927-929 (1975) · Zbl 0321.26005
[13] Dunford, N.; Schwartz, J., Linear operators. Part II: Spectral theory, (Courant, R.; Bers, L.; Stoker, J., Pure and Applied Mathematics, vol. VII (1963), Interscience Publishers), 490 · Zbl 0128.34803
[14] Eriksson, B., Some best constants in the Landau inequality on a finite interval, J. Approx. Theory, 94, 3, 420-454 (1998) · Zbl 0911.41006
[15] Gabushin, V., On the best approximation of the differentiation operator on the half-line, Math. Notes. Math. Notes, Mat. Zametki, 6, 5, 573-582-810 (1969), translation from · Zbl 0216.13603
[16] Ganzburg, M., Sharp constants in V. A. Markov-Bernstein type inequalities of different metrics, J. Approx. Theory, 215, C, 92-105 (2017) · Zbl 1358.41008
[17] Kalyabin, G., Sharp constants in inequalities for intermediate derivatives (the Gabushin Case), Funct. Anal. Appl., 38, 3, 184-191 (2004) · Zbl 1079.41009
[18] Karlin, S., Oscillatory perfect splines and related extremal problems, (Karlin, S.; Micchelli, C. A.; Pinkus, A.; Schoenberg, I. J., Studies in Spline Functions and Approximation Theory (1976), Academic Press: Academic Press New York), 371-460 · Zbl 0348.41015
[19] Kwong, M.; Zettl, A., (Norm Inequalities for Derivatives and Differences. Norm Inequalities for Derivatives and Differences, Lecture Notes in Mathematics, vol. 1536 (1992), Springer Berlin Heidelberg), 160 · Zbl 0925.26011
[20] Labelle, G., Concerning polynomials on the unit interval, Proc. Amer. Math. Soc., 20, 2, 321-326 (1969) · Zbl 0176.01303
[21] Landau, E., Einige ungleichungen für zweimal differenzierbare funktionen, Proc. Lond. Math. Soc., 13, 43-49 (1914) · JFM 44.0463.02
[22] Lunev, A.; Oridoroga, L., Exact constants in generalized inequalities for intermediate derivatives, Math. Notes, 85, 5, 703-711 (2009) · Zbl 1180.41009
[23] Markov, V., On functions which deviate least from zero in a given interval, Math. Ann., 77, 213-258 (1916), (in Russian), German translation: · JFM 46.0415.01
[24] Milovanović, G.; Mitrinović, D.; Rassias, T., Topics in Polynomials: Extremal Problems, Inequalities, Zeros (1994), World Scientific: World Scientific Singapore · Zbl 0848.26001
[25] Mitrinović, D.; Pecaric, J.; Fink, A., (Inequalities Involving Functions and their Integrals and Derivatives. Inequalities Involving Functions and their Integrals and Derivatives, Mathematics and its Applications, vol. 53 (1991), Springer Netherlands), 587 · Zbl 0744.26011
[26] Naidenov, N., Landau-Type extremal problem for the triple \(\| f \|_\infty, \| f^\prime \|_p, \| f^{\prime \prime} \|_\infty\) on a finite interval, J. Approx. Theory, 123, 2, 147-161 (2003) · Zbl 1035.41008
[27] Naidenov, N., On an extremal problem of Kolmogorov type for functions from \(W_\infty^4 ( [ a , b ] )\), East J. Approx., 9, 1, 117-135 (2003) · Zbl 1111.41002
[28] Pinkus, A., Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval, J. Approx. Theory, 23, 1, 37-64 (1978) · Zbl 0395.41006
[29] Sato, M., The Landau inequality for bounded intervals with \(f^{( 3 )}\) finite, J. Approx. Theory, 34, 2, 159-166 (1982) · Zbl 0494.41009
[30] Shadrin, A. Y., Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes \(W^m_2\), Math. Notes. Math. Notes, Mat. Zametki, 48, 4, 132-139-1063 (1990), translation from · Zbl 0753.42003
[31] A. Shadrin, To the Landau-Kolmogorov problem on a finite interval, in: Proceedings of the International Conference “Open Problems in Approximation Theory”, Vonesta Voda, 1993, pp. 192-204.
[32] Shadrin, A., A note on the least constant in Landau inequality on a finite interval, (Milovanović, G. V., Recent Progress in Inequalities. Mathematics and its Applications, Vol. 430 (1998), Springer, Dordecht), 489-491 · Zbl 0898.41008
[33] Shadrin, A., Twelve proofs of the Markov inequality, (Nikolov, G.; etal., Approximation Theory: A Volume Dedicated To Borislav Bojanov (2004), Prof. M. Drinov Acad. Publ. House, Sofia), 233-298
[34] Shadrin, A., The Landau-Kolmogorov inequality revisited, Discrete Contin. Dyn. Syst., 34, 3, 1183-1210 (2014) · Zbl 1280.41012
[35] Skorokhodov, D., On the Landau-Kolmogorov inequality between \(\| f^\prime \|_\infty, \| f \|_\infty\) and \(\| f^{\prime \prime \prime} \|_1\), Res. Math., 27, 1, 55-66 (2019) · Zbl 1489.41005
[36] Stechkin, S., Inequalities between the norms of the derivatives of an arbitrary function, Acta Sci. Math., 26, 225-230 (1965) · Zbl 0139.07004
[37] Stechkin, S., Best approximation of linear operators, Math. Notes, 1, 2, 91-99 (1967) · Zbl 0168.12201
[38] Taikov, L., Kolmogorov-Type inequalities and the best formulas for numerical differentiation, Math. Notes, 4, 2, 631-634 (1968) · Zbl 0206.34901
[39] Zvyagintsev, A., Kolmogorov’s Inequalities for \(n = 4\), Latv. Mat. Ezhegodnik, 26, 165-175 (1982), (in Russian) · Zbl 0514.26004
[40] Zvyagintsev, A.; Lepin, A., Kolmogorov’s Inequalities between the upper bounds of derivatives of functions for \(n = 3\), Latv. Mat. Ezhegodnik, 26, 176-181 (1982), (in Russian) · Zbl 0514.26005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.