×

Overset meshes for incompressible flows: on preserving accuracy of underlying discretizations. (English) Zbl 07511424

Summary: This study on overset meshes for incompressible-flow simulations is motivated by accurate prediction of wind farm aerodynamics involving large motions and deformations of components with complex geometry. Using first-order hyperbolic and elliptic equation proxies for the incompressible Navier-Stokes (NS) equations, we investigate the influence of information exchange between overset meshes on numerical performance where the underlying discretization is second-order accurate. The first aspect of information exchange surrounds interpolation of solution where we examine Lagrange and point-cloud-based interpolation for creating constraint equations between overset meshes. To maintain overall second-order accuracy, higher-order interpolation is required for elliptic problems, but linear interpolation is sufficient for hyperbolic problems in first-order form. Higher-order point-cloud-based interpolation provides a pathway to maintaining accuracy in unstructured meshes, but at higher complexity. The second aspect of information exchange focuses on comparing the approaches of overset single system (OSS) and overset Additive Schwarz (OAS) for coupling the linear systems of the overlapping meshes. While the former involves a single linear system, in the latter the discrete linear systems are solved separately, and solving the global system is accomplished through outer iterations and sequential information exchange in a Jacobi fashion. For the test cases studied, accuracy for hyperbolic problems is maintained by performing two outer iterations, whereas many outer iterations are required for elliptic systems. The order-of-accuracy studies explored here are critical for verifying the overset-mesh coupling algorithms used in engineering simulations. Accuracy of these simulations themselves is, however, quantified using engineering quantities of interest such as drag, power, etc. Consequently, we conclude with numerical experiments using NS equations for incompressible flows where we show that linear interpolation and few outer iterations are sufficient for achieving asymptotic convergence of engineering quantities of interest.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics

References:

[1] Vijayakumar, G.; Brasseur, J., Blade-resolved modeling with fluid-structure interaction, (Wind Energy Modelling and Simulation: Atmosphere and Plant (2019), Institution of Engineering and Technology)
[2] Chand, K. K.; Henshaw, W. D.; Lundquist, K. A.; Singer, M. A., Cgwind: a high-order accurate simulation tool for wind turbines and wind farms, (The Fifth International Symposium on Computational Wind Engineering (2010))
[3] Sitaraman, J.; Mavriplis, D. J.; Duque, E. P., Wind farm simulations using a full rotor model for wind turbines, (32nd ASME Wind Energy Symposium (2014)), 1086
[4] Kirby, A. C.; Brazell, M.; Yang, Z.; Roy, R.; Reza Ahrabi, B.; Mavriplis, D.; Sitaraman, J.; Stoellinger, M. K., Wind farm simulations using an overset hp-adaptive approach with blade-resolved turbine models, (23rd AIAA Computational Fluid Dynamics Conference (2017)), 3958
[5] Sprague, M.; Ananthan, S.; Vijayakumar, G.; Robinson, M., Exawind: a multi-fidelity modeling and simulation environment for wind energy, J. Phys. Conf. Ser., 1452, Article 012071 pp. (2020)
[6] Grinderslev, C.; Vijaykumar, G.; Ananthan, S.; Sørensen, N. N.; Fredrik, Z.; Sprague, M. A., Validation of blade-resolved computational fluid dynamics for a MW scale turbine rotor in atmospheric flow, J. Phys. Conf. Ser., 1618, Article 052049 pp. (2020)
[7] Volkov, E. A., The method of composite meshes for finite and infinite regions with piecewise smooth boundary, Tr. Mat. Inst. Steklova, 96, 117-148 (1968) · Zbl 0207.09502
[8] Starius, G., Composite mesh difference methods for elliptic boundary value problems, Numer. Math., 28, 243-258 (1977) · Zbl 0363.65078
[9] Atta, E., Component-adaptive grid interfacing, (19th Aerospace Sciences Meeting (1981)), 382
[10] Kreiss, B., Construction of a curvilinear grid, SIAM J. Sci. Stat. Comput., 4, 270-279 (1983) · Zbl 0536.65086
[11] Benek, J.; Steger, J.; Dougherty, F. C., A flexible grid embedding technique with application to the Euler equations, (6th Computational Fluid Dynamics Conference Danvers (1983)), 1944
[12] Benek, J.; Buning, P.; Steger, J., A 3-D chimera grid embedding technique, (7th Computational Physics Conference (1985)), 1523
[13] Rai, M. M., A conservative treatment of zonal boundaries for Euler equation calculations, J. Comput. Phys., 62, 472-503 (1986) · Zbl 0619.65085
[14] Chesshire, G.; Henshaw, W. D., Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys., 90, 1-64 (1990) · Zbl 0709.65090
[15] Magnus, R.; Yoshihara, H., Inviscid transonic flow over airfoils, AIAA J., 8, 2157-2162 (1970)
[16] Dalle, D. J.; Rogers, S. E.; Lee, H. C.; Chan, W. M., Inviscid and viscous CFD analysis of booster separation for the space launch system vehicle, (54th AIAA Aerospace Sciences Meeting (2016)), 0797
[17] Strawn, R. C.; Duque, E. P.; Ahmad, J., Rotorcraft aeroacoustics computations with overset-grid CFD methods, J. Am. Helicopter Soc., 44, 132-140 (1999)
[18] Hubbard, B.; Chen, H.-C., A chimera scheme for incompressible viscous flows with application to submarine hydrodynamics, (Fluid Dynamics Conference (1994)), 2210
[19] Borazjani, I.; Ge, L.; Le, T.; Sotiropoulos, F., A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows, Comput. Fluids, 77, 76-96 (2013) · Zbl 1284.76262
[20] Meakin, R.; Suhs, N., Unsteady aerodynamic simulation of multiple bodies in relative motion, (9th Computational Fluid Dynamics Conference (1989)), 1996
[21] Meakin, R., Object X-rays for cutting holes in composite overset structured grids, (15th AIAA Computational Fluid Dynamics Conference (2001)), 2537
[22] Merrill, B. E.; Peet, Y. T.; Fischer, P. F.; Lottes, J. W., A spectrally accurate method for overlapping grid solution of incompressible Navier-Stokes equations, J. Comput. Phys., 307, 60-93 (2016) · Zbl 1351.76203
[23] Mittal, K.; Dutta, S.; Fischer, P., Nonconforming Schwarz-spectral element methods for incompressible flow, Comput. Fluids, 191, Article 104237 pp. (2019) · Zbl 1519.76231
[24] Lee, Y.; Baeder, J., Implicit hole cutting - a new approach to overset grid connectivity, (16th AIAA Computational Fluid Dynamics Conference (2003)), 4128
[25] Sitaraman, J.; Floros, M.; Wissink, A.; Potsdam, M., Parallel domain connectivity algorithm for unsteady flow computations using overlapping and adaptive grids, J. Comput. Phys., 229, 4703-4723 (2010) · Zbl 1305.76058
[26] Horne, W. J.; Mahesh, K., A massively-parallel, unstructured overset method for mesh connectivity, J. Comput. Phys., 376, 585-596 (2019) · Zbl 1416.65575
[27] Quon, E. W.; Smith, M. J., Advanced data transfer strategies for overset computational methods, Comput. Fluids, 117, 88-102 (2015) · Zbl 1390.65035
[28] Chandar, D. D., On overset interpolation strategies and conservation on unstructured grids in openfoam, Comput. Phys. Commun., 239, 72-83 (2019) · Zbl 07684936
[29] Rai, M. M., An implicit, conservative, zonal-boundary scheme for Euler equation calculations, Comput. Fluids, 14, 295-319 (1986) · Zbl 0625.76073
[30] Crabill, J. A.; Sitaraman, J.; Jameson, A., A high-order overset method on moving and deforming grids, (AIAA Modeling and Simulation Technologies Conference (2016)), 3225
[31] Hadzic, H., Development and application of finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids (2006), Hamburg University of Technology, Ph.D. thesis
[32] Tang, H.; Jones, S. C.; Sotiropoulos, F., An overset-grid method for 3D unsteady incompressible flows, J. Comput. Phys., 191, 567-600 (2003) · Zbl 1134.76435
[33] Sankaran, V.; Sitaraman, J.; Wissink, A.; Datta, A.; Jayaraman, B.; Potsdam, M.; Mavriplis, D.; Yang, Z.; O’Brien, D.; Saberi, H.; Cheng, R.; Hariharan, N.; Strawn, R., Application of the Helios computational platform to rotorcraft flowfields, (48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010)), 1230
[34] Henshaw, W. D., Part I. The numerical solution of hyperbolic systems of conservation laws. Part II. Composite overlapping grid techniques (1985), California Institute of Technology, Ph.D. thesis
[35] Sherer, S. E.; Scott, J. N., High-order compact finite-difference methods on general overset grids, J. Comput. Phys., 210, 459-496 (2005) · Zbl 1113.76068
[36] Chicheportiche, J.; Gloerfelt, X., Study of interpolation methods for high-accuracy computations on overlapping grids, Comput. Fluids, 68, 112-133 (2012) · Zbl 1365.76216
[37] Völkner, S.; Brunswig, J.; Rung, T., Analysis of non-conservative interpolation techniques in overset grid finite-volume methods, Comput. Fluids, 148, 39-55 (2017) · Zbl 1410.76271
[38] Crabill, J. A., Towards industry-ready high-order overset methods on modern hardware (2018), Stanford University, Ph.D. thesis
[39] Berger, M. J., On conservation at grid interfaces, SIAM J. Numer. Anal., 24, 967-984 (1987) · Zbl 0633.65086
[40] Chesshire, G.; Henshaw, W. D., A scheme for conservative interpolation on overlapping grids, SIAM J. Sci. Comput., 15, 819-845 (1994) · Zbl 0805.65086
[41] Wang, Z., A fully conservative interface algorithm for overlapped grids, J. Comput. Phys., 122, 96-106 (1995) · Zbl 0835.76081
[42] Hinatsu, M.; Ferziger, J., Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique, Int. J. Numer. Methods Fluids, 13, 971-997 (1991) · Zbl 0741.76044
[43] Perng, C.; Street, R., A coupled multigrid-domain-splitting technique for simulating incompressible flows in geometrically complex domains, Int. J. Numer. Methods Fluids, 13, 269-286 (1991) · Zbl 0739.76053
[44] Zang, Y.; Street, R., A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains, Int. J. Numer. Methods Fluids, 20, 341-361 (1995) · Zbl 0836.76078
[45] Henshaw, W. D., A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids, J. Comput. Phys., 113, 13-25 (1994) · Zbl 0808.76059
[46] Zahle, F.; Sørensen, N. N.; Johansen, J., Wind turbine rotor-tower interaction using an incompressible overset grid method, Wind Energy, 12, 594-619 (2009)
[47] Carrica, P.; Huang, J.; Noack, R.; Kaushik, D.; Smith, B.; Stern, F., Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant, Comput. Fluids, 39, 1095-1111 (2010) · Zbl 1242.76198
[48] Chandar, D. D.; Sitaraman, J.; Mavriplis, D. J., A GPU-based incompressible Navier-Stokes solver on moving overset grids, Int. J. Comput. Fluid Dyn., 27, 268-282 (2013) · Zbl 07510434
[49] Shen, Z.; Wan, D.; Carrica, P. M., Dynamic overset grids in openfoam with application to kcs self-propulsion and maneuvering, Ocean Eng., 108, 287-306 (2015)
[50] Merrill, B. E.; Peet, Y. T., Moving overlapping grid methodology of spectral accuracy for incompressible flow solutions around rigid bodies in motion, J. Comput. Phys., 390, 121-151 (2019) · Zbl 1452.76190
[51] Jonkman, J. M., The new modularization framework for the fast wind turbine cae tool, (Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas (2013))
[52] Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.; Jonkman, B., Beamdyn: a high-fidelity wind turbine blade solver in the fast modular framework, Wind Energy, 20, 1439-1462 (2017)
[53] Roget, B.; Sitaraman, J., Robust and efficient overset grid assembly for partitioned unstructured meshes, J. Comput. Phys., 260, 1-24 (2014) · Zbl 1349.65669
[54] Zhang, W.; Almgren, A.; Beckner, V.; Bell, J.; Blaschke, J.; Chan, C.; Day, M.; Friesen, B.; Gott, K.; Graves, D., Amrex: a framework for block-structured adaptive mesh refinement, J. Open Sour. Softw., 4, 1370 (2019)
[55] Hand, M. M.; Simms, D. A.; Fingerish, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M., Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns (2001), National Renewable Energy Laboratory, Technical Report NREL/TP-500-29955
[56] Burton, T. M.; Eaton, J. K., Analysis of a fractional-step method on overset grids, J. Comput. Phys., 177, 336-364 (2002) · Zbl 1017.76051
[57] Domino, S., Toward verification of formal time accuracy for a family of approximate projection methods using the method of manufactured solutions, (Proceedings of the 2006 Summer Program (2006), Center for Turbulence Research), 163-177
[58] Thomas, S. J.; Ananthan, S.; Yellapantula, S.; Hu, J. J.; Lawson, M.; Sprague, M. A., A comparison of classical and aggregation-based algebraic multigrid preconditioners for high-fidelity simulation of wind turbine incompressible flows, SIAM J. Sci. Comput., 41, S196-S219 (2019) · Zbl 1433.76142
[59] Chang, W.; Giraldo, F.; Perot, B., Analysis of an exact fractional step method, J. Comput. Phys., 180, 183-199 (2002) · Zbl 1130.76394
[60] Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 108, 51-58 (1993) · Zbl 0778.76064
[61] Diskin, B.; Thomas, J. L.; Nielsen, E. J.; Nishikawa, H.; White, J. A., Comparison of node-centered and cell-centered unstructured finite-volume discretizations: viscous fluxes, AIAA J., 48, 1326-1338 (2010)
[62] Brazell, M. J.; Sitaraman, J.; Mavriplis, D. J., An overset mesh approach for 3D mixed element high-order discretizations, J. Comput. Phys., 322, 33-51 (2016) · Zbl 1351.76050
[63] Henshaw, W. D., Ogen: an overlapping grid generator for Overture (1998), Lawrence Livermore National Laboratory, Technical Report UCRL-MA-132237
[64] Noack, R., A direct cut approach for overset hole cutting, (18th AIAA Computational Fluid Dynamics Conference (2007)), 3835
[65] Sitaraman, J.; Potsdam, M.; Wissink, A.; Jayaraman, B.; Datta, A.; Mavriplis, D.; Saberi, H., Rotor loads prediction using Helios: a multisolver framework for rotorcraft aeromechanics analysis, J. Aircr., 50, 478-492 (2013)
[66] Vreman, A., Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres, J. Fluid Mech., 796, 40-85 (2016) · Zbl 1462.76081
[67] Drikakis, D.; Majewski, J.; Rokicki, J.; Żółtak, J., Investigation of blending-function-based overlapping-grid technique for compressible flows, Comput. Methods Appl. Mech. Eng., 190, 5173-5195 (2001) · Zbl 1017.76052
[68] Wissink, A.; Sitaraman, J.; Sankaran, V.; Mavriplis, D.; Pulliam, T., A multi-code python-based infrastructure for overset CFD with adaptive Cartesian grids, (46th AIAA Aerospace Sciences Meeting and Exhibit (2008)), 927
[69] Vreman, A., A staggered overset grid method for resolved simulation of incompressible flow around moving spheres, J. Comput. Phys., 333, 269-296 (2017)
[70] Gopalan, H.; Jaiman, R.; Chandar, D. D., Flow past tandem circular cylinders at high Reynolds numbers using overset grids in openfoam, (53rd AIAA Aerospace Sciences Meeting (2015)), 0315
[71] Liu, G. R., Meshfree Methods: Moving Beyond the Finite Element Method (2003), CRC Press · Zbl 1031.74001
[72] Krishnamurthy, T., Comparison of response surface construction methods for derivative estimation using moving least squares, kriging and radial basis functions, (46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2005)), 1821
[73] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229-256 (1994) · Zbl 0796.73077
[74] Fornberg, B.; Piret, C., On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere, J. Comput. Phys., 227, 2758-2780 (2008) · Zbl 1135.65039
[75] Fasshauer, G. E.; McCourt, M. J., Stable evaluation of Gaussian radial basis function interpolants, SIAM J. Sci. Comput., 34, A737-A762 (2012) · Zbl 1252.65028
[76] Li, X.; Li, S., On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl., 72, 1515-1531 (2016) · Zbl 1361.65090
[77] Elman, H. C.; Howle, V. E.; Shadid, J. N.; Tuminaro, R. S., A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations, J. Comput. Phys., 187, 504-523 (2003) · Zbl 1061.76058
[78] Roache, P. J., Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 4-10 (2002)
[79] Yokota, R.; Barba, L. A.; Knepley, M. G., Petrbf—a parallel o (n) algorithm for radial basis function interpolation with gaussians, Comput. Methods Appl. Mech. Eng., 199, 1793-1804 (2010) · Zbl 1231.65026
[80] Cuomo, S.; Galletti, A.; Giunta, G.; Starace, A., Surface reconstruction from scattered point via rbf interpolation on gpu, (2013 Federated Conference on Computer Science and Information Systems (2013), IEEE), 433-440
[81] Ding, Z.; Mei, G.; Cuomo, S.; Xu, N.; Tian, H., Performance evaluation of gpu-accelerated spatial interpolation using radial basis functions for building explicit surfaces, Int. J. Parallel Program., 46, 963-991 (2018)
[82] Smith, B.; Bjorstad, P.; Gropp, W., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (2004), Cambridge University Press
[83] Dubois, O.; Gander, M. J., Convergence behavior of a two-level optimized Schwarz preconditioner, (Domain Decomposition Methods in Science and Engineering XVIII (2009), Springer), 177-184 · Zbl 1183.65030
[84] Churchfield, M.; Lee, S.; Moriarty, P.; Martinez, L.; Leonardi, S.; Vijayakumar, G.; Brasseur, J., A large-eddy simulation of wind-plant aerodynamics, (50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2012)), 537
[85] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T., An overview of the trilinos project, ACM Trans. Math. Softw., 31, 397-423 (2005) · Zbl 1136.65354
[86] Falgout, R. D.; Yang, U. M., hypre: a library of high performance preconditioners, (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[87] Braza, M.; Chassaing, P.; Minh, H. H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, 79-130 (1986) · Zbl 0596.76047
[88] Henderson, R. D., Details of the drag curve near the onset of vortex shedding, Phys. Fluids, 7, 2102-2104 (1995)
[89] Farrant, T.; Tan, M.; Price, W., A cell boundary element method applied to laminar vortex shedding from circular cylinders, Comput. Fluids, 30, 211-236 (2001) · Zbl 1011.76053
[90] Posdziech, O.; Grundmann, R., A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder, J. Fluids Struct., 23, 479-499 (2007)
[91] Mittal, S.; Kumar, B., Flow past a rotating cylinder, J. Fluid Mech., 476, 303-334 (2003) · Zbl 1163.76442
[92] Padrino, J.; Joseph, D., Numerical study of the steady-state uniform flow past a rotating cylinder, J. Fluid Mech., 557, 191-223 (2006) · Zbl 1147.76565
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.