×

Data-driven transient lift attenuation for extreme vortex gust-airfoil interactions. (English) Zbl 07917805

Summary: We present a data-driven feedforward control to attenuate large transient lift experienced by an airfoil disturbed by an extreme level of discrete vortex gust. The current analysis uses a nonlinear machine-learning technique to compress the high-dimensional flow dynamics onto a low-dimensional manifold. While the interaction dynamics between the airfoil and extreme vortex gust are parametrized by its size, gust ratio and position, the wake responses are well captured on this simple manifold. The effect of extreme vortex disturbance about the undisturbed baseline flows can be extracted in a physically interpretable manner. Furthermore, we call on phase-amplitude reduction to model and control the complex nonlinear extreme aerodynamic flows. The present phase-amplitude reduction model reveals the sensitivity of the dynamical system in terms of the phase shift and amplitude change induced by external forcing with respect to the baseline periodic orbit. By performing the phase-amplitude analysis for a latent dynamical model identified by sparse regression, the sensitivity functions of low-dimensionalized aerodynamic flows for both phase and amplitude are derived. With the phase and amplitude sensitivity functions, optimal forcing can be determined to quickly suppress the effect of extreme vortex gusts towards the undisturbed states in a low-order space. The present optimal flow modification built upon the machine-learned low-dimensional subspace quickly alleviates the impact of transient vortex gusts for a variety of extreme aerodynamic scenarios, providing a potential foundation for flight of small-scale air vehicles in adverse atmospheric conditions.

MSC:

76-XX Fluid mechanics

References:

[1] Anantharaman, V., Feldkamp, J., Fukami, K. & Taira, K.2023Image and video compression of fluid flow data. Theor. Comput. Fluid Dyn.37 (1), 61-82.
[2] Anderson, J.D.1991Fundamentals of Aerodynamics. McGraw-Hill.
[3] Asztalos, K.J., Dawson, S.T.M. & Williams, D.R.2021Modeling the flow state sensitivity of actuation response on a stalled airfoil. AIAA J.59 (8), 2901-2915.
[4] Berkooz, G., Holmes, P. & Lumley, J.L.1993The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech.25 (1), 539-575.
[5] Biler, H., Sedky, G., Jones, A.R., Saritas, M. & Cetiner, O.2021Experimental investigation of transverse and vortex gust encounters at low Reynolds numbers. AIAA J.59 (3), 786-799.
[6] Brenner, M.P., Eldredge, J.D. & Freund, J.B.2019Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids4, 100501.
[7] Brown, E., Moehlis, J. & Holmes, P.2004On the phase reduction and response dynamics of neural oscillator populations. Neural Comput.16 (4), 673-715. · Zbl 1054.92006
[8] Brunton, S.L., Hemanti, M.S. & Taira, K.2020aSpecial issue on machine learning and data-driven methods in fluid dynamics. Theor. Comput. Fluid Dyn.34 (4), 333-337.
[9] Brunton, S.L. & Noack, B.R.2015Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev.67 (5), 050801.
[10] Brunton, S.L., Noack, B.R. & Koumoutsakos, P.2020bMachine learning for fluid mechanics. Annu. Rev. Fluid Mech.52, 477-508. · Zbl 1439.76138
[11] Brunton, S.L., Proctor, J.L. & Kutz, J.N.2016aDiscovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA113 (15), 3932-3937. · Zbl 1355.94013
[12] Brunton, S.L., Proctor, J.L. & Kutz, J.N.2016bSparse identification of nonlinear dynamics with control. IFAC-PapersOnLine49 (18), 710-715.
[13] Cai, G., Dias, J. & Seneviratne, L.2014A survey of small-scale unmanned aerial vehicles: recent advances and future development trends. Unmanned Syst.2 (2), 175-199.
[14] Chang, C.-C.1992Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A437 (1901), 517-525. · Zbl 0758.76018
[15] De Jesús, C.E.P. & Graham, M.D.2023Data-driven low-dimensional dynamic model of Kolmogorov flow. Phys. Rev. Fluids8 (4), 044402.
[16] Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G. & Succi, S.2018Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Comput. Fluids166, 200-208. · Zbl 1390.76708
[17] Erichson, N.B., Mathelin, L., Yao, Z., Brunton, S.L., Mahoney, M.W. & Kutz, J.N.2020Shallow neural networks for fluid flow reconstruction with limited sensors. Proc. R. Soc. Lond. A476 (2238), 20200097. · Zbl 1472.68172
[18] Ermentrout, B.1996Type I membranes, phase resetting curves, and synchrony. Neural Comput.8 (5), 979-1001.
[19] Foias, C., Manley, O. & Temam, R.1988Modelling of the interaction of small and large eddies in two dimensional turbulent flows. ESAIM: Math. Model. Numer. Anal.22 (1), 93-118. · Zbl 0663.76054
[20] Fukami, K., Fukagata, K. & Taira, K.2019Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech.870, 106-120.
[21] Fukami, K., Fukagata, K. & Taira, K.2023Super-resolution analysis via machine learning: a survey for fluid flows. Theor. Comput. Fluid Dyn.37, 421-444.
[22] Fukami, K., Goto, S. & Taira, K.2024Data-driven nonlinear turbulent flow scaling with Buckingham Pi variables. J. Fluid Mech.984, R4.
[23] Fukami, K., Hasegawa, K., Nakamura, T., Morimoto, M. & Fukagata, K.2021aModel order reduction with neural networks: application to laminar and turbulent flows. SN Comput. Sci.2, 467.
[24] Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K. & Taira, K.2021bGlobal field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. Nat. Mach. Intell.3, 945-951.
[25] Fukami, K., Murata, T., Zhang, K. & Fukagata, K.2021cSparse identification of nonlinear dynamics with low-dimensionalized flow representations. J. Fluid Mech.926, A10. · Zbl 1500.76068
[26] Fukami, K. & Taira, K.2023Grasping extreme aerodynamics on a low-dimensional manifold. Nat. Commun.14, 6480.
[27] Fukami, K. & Taira, K.2024 Extreme aerodynamics of vortex impingement: machine-learning-based compression and situational awareness. In 13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13), Montréal, Canada, p. 114.
[28] Godavarthi, V., Kawamura, Y. & Taira, K.2023Optimal waveform for fast synchronization of airfoil wakes. J. Fluid Mech.976, R1. · Zbl 07774983
[29] Greenblatt, D. & Williams, D.R.2022Flow control for unmanned air vehicles. Annu. Rev. Fluid Mech.54, 383-412. · Zbl 1491.76025
[30] Ham, F. & Iaccarino, G.2004 Energy conservation in collocated discretization schemes on unstructured meshes. In Annual Research Briefs, pp. 3-14. Center for Turbulence Research.
[31] Ham, F., Mattsson, K. & Iaccarino, G.2006 Accurate and stable finite volume operators for unstructured flow solvers. In Annual Research Briefs, pp. 243-261. Center for Turbulence Research.
[32] Hansen, P.C. & O’Leary, D.P.1993The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput.14 (6), 1487-1503. · Zbl 0789.65030
[33] Harada, T., Tanaka, H., Hankins, M.J. & Kiss, I.Z.2010Optimal waveform for the entrainment of a weakly forced oscillator. Phys. Rev. Lett.105 (8), 088301.
[34] He, G., Deparday, J., Siegel, L., Henning, A. & Mulleners, K.2020Stall delay and leading-edge suction for a pitching airfoil with trailing-edge flap. AIAA J.58 (12), 5146-5155.
[35] He, X. & Williams, D.R.2023Pressure feedback control of aerodynamic loads on a delta wing in transverse gusts. AIAA J.61 (4), 1659-1674.
[36] Herrmann, B., Brunton, S.L., Pohl, J.E. & Semaan, R.2022Gust mitigation through closed-loop control. II. Feedforward and feedback control. Phys. Rev. Fluids7 (2), 024706.
[37] Hinton, G.E. & Salakhutdinov, R.R.2006Reducing the dimensionality of data with neural networks. Science313 (5786), 504-507. · Zbl 1226.68083
[38] Holton, A.E., Lawson, S. & Love, C.2015Unmanned aerial vehicles: opportunities, barriers, and the future of ‘drone journalism’. J. Pract.9 (5), 634-650.
[39] Hoppensteadt, F.C. & Izhikevich, E.M.1997Weakly Connected Neural Networks. Springer Science & Business Media. · Zbl 0887.92003
[40] Iima, M.2019Jacobian-free algorithm to calculate the phase sensitivity function in the phase reduction theory and its applications to Kármán’s vortex street. Phys. Rev. E99 (6), 062203.
[41] Iima, M.2021Phase reduction technique on a target region. Phys. Rev. E103 (5), 053303.
[42] Iima, M.2024Optimal external forces of the lock-in phenomena for flow past an inclined plate in uniform flow. Phys. Rev. E109 (4), 045102.
[43] Jones, A.R. & Cetiner, O.2021Overview of unsteady aerodynamic response of rigid wings in gust encounters. AIAA J.59 (2), 731-736.
[44] Jones, A.R., Cetiner, O. & Smith, M.J.2022Physics and modeling of large flow disturbances: discrete gust encounters for modern air vehicles. Annu. Rev. Fluid Mech.54, 469-493. · Zbl 1492.76072
[45] Kaiser, E., Kutz, J.N. & Brunton, S.L.2018Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. Lond. A474 (2219), 20180335. · Zbl 1425.93175
[46] Kawamura, Y., Godavarthi, V. & Taira, K.2022Adjoint-based phase reduction analysis of incompressible periodic flows. Phys. Rev. Fluids7 (10), 104401.
[47] Khodkar, M.A., Klamo, J.T. & Taira, K.2021Phase-locking of laminar wake to periodic vibrations of a circular cylinder. Phys. Rev. Fluids6 (3), 034401.
[48] Khodkar, M.A. & Taira, K.2020Phase-synchronization properties of laminar cylinder wake for periodic external forcings. J. Fluid Mech.904, R1. · Zbl 1460.76290
[49] Kotani, K., Ogawa, Y., Shirasaka, S., Akao, A., Jimbo, Y. & Nakao, H.2020Nonlinear phase-amplitude reduction of delay-induced oscillations. Phys. Rev. Res.2 (3), 033106.
[50] Kuramoto, Y.1984Chemical Oscillations, Waves, and Turbulence. Springer. · Zbl 0558.76051
[51] Kuramoto, Y. & Nakao, H.2019On the concept of dynamical reduction: the case of coupled oscillators. Phil. Trans. R. Soc. A377 (2160), 20190041. · Zbl 1462.34062
[52] Kurebayashi, W., Shirasaka, S. & Nakao, H.2013Phase reduction method for strongly perturbed limit cycle oscillators. Phys. Rev. Lett.111 (21), 214101.
[53] Kurtulus, D.F.2015On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at \(Re=1000\). Intl J. Micro Air Veh.7 (3), 301-326.
[54] Li, S., Kaiser, E., Laima, S., Li, H., Brunton, S.L. & Kutz, J.N.2019Discovering time-varying aerodynamics of a prototype bridge by sparse identification of nonlinear dynamical systems. Phys. Rev. E100 (2), 022220.
[55] Linot, A.J., Zeng, K. & Graham, M.D.2023Turbulence control in plane couette flow using low-dimensional neural ODE-based models and deep reinforcement learning. Intl J. Heat Fluid Flow101, 109139.
[56] Liu, Y., Li, K., Zhang, J., Wang, H. & Liu, L.2012Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation. Commun. Nonlinear Sci. Numer. Simul.17 (8), 3427-3434.
[57] Loe, I.A., Nakao, H., Jimbo, Y. & Kotani, K.2021Phase-reduction for synchronization of oscillating flow by perturbation on surrounding structure. J. Fluid Mech.911, R2. · Zbl 1461.76130
[58] Loe, I.A., Zheng, T., Kotani, K. & Jimbo, Y.2023Controlling fluidic oscillator flow dynamics by elastic structure vibration. Sci. Rep.13 (1), 8852.
[59] Lumley, J.L.1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. A.M. Yaglom & V.I. Tatarski). Nauka.
[60] Mauroy, A. & Mezić, I.2018Global computation of phase-amplitude reduction for limit-cycle dynamics. Chaos28 (7), 073108. · Zbl 1401.37034
[61] Mauroy, A., Mezić, I. & Moehlis, J.2013Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Physica D: Nonlinear Phenom.261, 19-30. · Zbl 1284.37047
[62] Menon, K., Kumar, S. & Mittal, R.2022Contribution of spanwise and cross-span vortices to the lift generation of low-aspect-ratio wings: insights from force partitioning. Phys. Rev. Fluids7 (11), 114102.
[63] Mircheski, P., Zhu, J. & Nakao, H.2023Phase-amplitude reduction and optimal phase locking of collectively oscillating networks. Chaos33, 103111. · Zbl 07862564
[64] Mishra, B., Garg, D., Narang, P. & Mishra, V.2020Drone-surveillance for search and rescue in natural disaster. Comput. Commun.156, 1-10.
[65] Mohamed, A., Marino, M., Watkins, S., Jaworski, J. & Jones, A.2023Gusts encountered by flying vehicles in proximity to buildings. Drones7 (1), 22.
[66] Moriche, M., Sedky, G., Jones, A.R., Flores, O. & García-Villalba, M.2021Characterization of aerodynamic forces on wings in plunge maneuvers. AIAA J.59 (2), 751-762.
[67] Nair, A.G., Brunton, S.L. & Taira, K.2018Networked-oscillator-based modeling and control of unsteady wake flows. Phys. Rev. E97 (6), 063107.
[68] Nair, A.G., Taira, K., Brunton, B.W. & Brunton, S.L.2021Phase-based control of periodic flows. J. Fluid Mech.927, A30. · Zbl 1494.76033
[69] Nakao, H.2016Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys.57 (2), 188-214.
[70] Nakao, H.2021 Phase and amplitude description of complex oscillatory patterns in reaction-diffusion systems. In Physics of Biological Oscillators: New Insights into Non-Equilibrium and Non-Autonomous Systems, pp. 11-27. Springer.
[71] Omata, N. & Shirayama, S.2019A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder. AIP Adv.9 (1), 015006.
[72] Qian, Y., Wang, Z. & Gursul, I.2023Lift alleviation in travelling vortical gusts. Aeronaut. J.127 (1316), 1676-1697.
[73] Racca, A., Doan, N.A.K. & Magri, L.2023Predicting turbulent dynamics with the convolutional autoencoder echo state network. J. Fluid Mech.975, A2. · Zbl 07767384
[74] Ribeiro, J.H.M., Yeh, C.-A., Zhang, K. & Taira, K.2022Wing sweep effects on laminar separated flows. J. Fluid Mech.950, A23.
[75] Schmid, P.J.2010Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[76] Sedky, G., Gementzopoulos, A., Lagor, F.D. & Jones, A.R.2023Experimental mitigation of large-amplitude transverse gusts via closed-loop pitch control. Phys. Rev. Fluids8 (6), 064701.
[77] Sedky, G., Jones, A.R. & Lagor, F.D.2020Lift regulation during transverse gust encounters using a modified Goman-Khrabrov model. AIAA J.58 (9), 3788-3798.
[78] Shim, S.-B., Imboden, M. & Mohanty, P.2007Synchronized oscillation in coupled nanomechanical oscillators. Science316 (5821), 95-99.
[79] Shirasaka, S., Kurebayashi, W. & Nakao, H.2017Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems. Chaos27 (2), 023119. · Zbl 1387.37045
[80] Smith, L., Fukami, K., Sedky, G., Jones, A. & Taira, K.2024A cyclic perspective on transient gust encounters through the lens of persistent homology. J. Fluid Mech.980, A18.
[81] Srinivasan, P.A., Guastoni, L., Azizpour, H., Schlatter, P. & Vinuesa, R.2019Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids4, 054603.
[82] Stutz, C.M., Hrynuk, J.T. & Bohl, D.G.2023Dimensional analysis of a transverse gust encounter. Aerosp. Sci. Technol.137, 108285.
[83] Taira, K. & Nakao, H.2018Phase-response analysis of synchronization for periodic flows. J. Fluid Mech.846, R2. · Zbl 1404.37102
[84] Takata, S., Kato, Y. & Nakao, H.2021Fast optimal entrainment of limit-cycle oscillators by strong periodic inputs via phase-amplitude reduction and Floquet theory. Chaos31 (9), 093124. · Zbl 07866717
[85] Takeda, N., Ito, H. & Kitahata, H.2023Two-dimensional hydrodynamic simulation for synchronization in coupled density oscillators. Phys. Rev. E107 (3), 034201.
[86] Taylor, G.I.1918 On the dissipation of eddies. Meteorology, Oceanography and Turbulent Flow, pp. 96-101. Cambridge University Press.
[87] Temam, R.1989Do inertial manifolds apply to turbulence?Physica D: Nonlinear Phenom.37 (1-3), 146-152. · Zbl 0687.76058
[88] Wang, Z., Bovik, A.C., Sheikh, H.R. & Simoncelli, E.P.2004Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process.13 (4), 600-612.
[89] Wedgwood, K.C.A., Lin, K.K., Thul, R. & Coombes, S.2013Phase-amplitude descriptions of neural oscillator models. J. Math. Neurosci.3, 1-22. · Zbl 1291.92052
[90] Wilson, D. & Moehlis, J.2016Isostable reduction of periodic orbits. Phys. Rev. E94 (5), 052213.
[91] Xu, J. & Duraisamy, K.2020Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Comput. Methods Appl. Mech. Engng372, 113379. · Zbl 1506.68111
[92] Yawata, K., Fukami, K., Taira, K. & Nakao, H.2024Phase autoencoder for limit-cycle oscillators. Chaos34 (6), 063111. · Zbl 07901158
[93] Zhang, C. & Kovacs, J.M.2012The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric.13, 693-712.
[94] Zhang, K. & Haque, M.N.2022Wake interactions between two side-by-side circular cylinders with different sizes. Phys. Rev. Fluids7 (6), 064703.
[95] Zhang, K., Shah, B. & Bilgen, O.2022Low-Reynolds-number aerodynamic characteristics of airfoils with piezocomposite trailing surfaces. AIAA J.60 (4), 2701-2706.
[96] Zhong, Y., Fukami, K., An, B. & Taira, K.2023Sparse sensor reconstruction of vortex-impinged airfoil wake with machine learning. Theor. Comput. Fluid Dyn.37, 269-287.
[97] Zlotnik, A., Chen, Y., Kiss, I.Z., Tanaka, H. & Li, J.-S.2013Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. Phys. Rev. Lett.111 (2), 024102.
[98] Zlotnik, A., Nagao, R., Kiss, I.Z. & Li, J.-S.2016Phase-selective entrainment of nonlinear oscillator ensembles. Nat. Commun.7 (1), 10788.
[99] Zou, H.2006The adaptive lasso and its oracle properties. J. Am. Stat. Assoc.101 (476), 1418-1429. · Zbl 1171.62326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.