×

A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena. (English) Zbl 1273.76294

Summary: We analyze optimized explicit Runge-Kutta schemes (RK) for computational aeroacoustics, and wave propagation phenomena in general. Exploiting the analysis developed in [S. Pirozzoli, J. Comput. Phys. 222, No. 2, 809–831 (2007; Zbl 1158.76382)], we rigorously evaluate the performance of several time integration schemes in terms of appropriate error and cost metrics, and provide a general strategy to design Runge-Kutta methods tailored for specific applications. We present families of optimized second- and third-order Runge-Kutta schemes with up to seven stages, and describe their implementation in the framework of Williamson’s \(2N\)-storage formulation [J.H. Williamson, J. Comput. Phys. 35, 48–56 (1980; Zbl 0425.65038)]. Numerical simulations of the 1D linear advection equation and of the 2D linearized Euler equations are performed to demonstrate the validity of the theory and to quantify the improvement provided by optimized schemes.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65L05 Numerical methods for initial value problems involving ordinary differential equations
Full Text: DOI

References:

[1] Pirozzoli, S., Performance analysis and optimization of finite-difference schemes for wave propagation problems, J. Comput. Phys., 222, 809-831 (2007) · Zbl 1158.76382
[2] Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 48-56 (1980) · Zbl 0425.65038
[3] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[4] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference scheme for computational acoustics, J. Comput. Phys., 107, 262-281 (1993) · Zbl 0790.76057
[5] Kim, J.; Lee, D., Optimized compact finite difference schemes with maximum resolution, AIAA J., 34, 5, 887-893 (1996) · Zbl 0900.76317
[6] C. Lui, S.K. Lele, Direct numerical simulation of spatially developing, compressible, turbulent mixing layers, AIAA Paper 2001-0291.; C. Lui, S.K. Lele, Direct numerical simulation of spatially developing, compressible, turbulent mixing layers, AIAA Paper 2001-0291.
[7] Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations (1987), Wiley: Wiley Chichester · Zbl 0616.65072
[8] Hu, F. Q.; Hussaini, M. Y.; Manthey, J. L., Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys., 124, 177-191 (1996) · Zbl 0849.76046
[9] Kennedy, C. A.; Carpenter, M. H.; Lewis, R. M., Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35, 177-219 (2000) · Zbl 0986.76060
[10] Stanescu, D.; Habashi, W. G., \(2 n\)-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys., 143, 674-681 (1998) · Zbl 0952.76063
[11] Calvo, M.; Franco, J. M.; Rández, L., Minimum storage Runge-Kutta schemes for computational acoustics, Comput. Math. Appl., 45, 535-545 (2003) · Zbl 1036.65059
[12] Calvo, M.; Franco, J. M.; Rández, L., A new minimum storage Runge-Kutta scheme for computational acoustics, J. Comput. Phys., 201, 1-12 (2004) · Zbl 1059.65061
[13] Bogey, C.; Bailly, C., A family of low dispersive and low dissipative explicit schemes for flow and noise computations, J. Comput. Phys., 194, 194-214 (2004) · Zbl 1042.76044
[14] Berland, J.; Bogey, C.; Bailly, C., Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm, Comput. Fluids, 35, 1459-1463 (2006) · Zbl 1177.76252
[15] Ramboer, J.; Broeckhoven, T.; Smirnov, S.; Lacor, C., Optimization of time integration schemes coupled to spatial discretization for use in CAA applications, J. Comput. Phys., 213, 777-802 (2006) · Zbl 1136.76391
[16] Hirsch, C., Numerical Computation of Internal and External Flows (1988), Wiley: Wiley New York · Zbl 0662.76001
[17] J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam (Eds.), ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA CP 3300, 2005.; J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam (Eds.), ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA CP 3300, 2005.
[18] Bogey, C.; Bailly, C.; Juvé, D., Computation of flow noise using source terms in linearized Euler’s equations, AIAA J., 40, 235-243 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.