×

Characterization of trace spaces on regular trees via dyadic norms. (English) Zbl 1469.46034

Summary: In this paper, we study the traces of Orlicz-Sobolev spaces on a regular rooted tree. After giving a dyadic decomposition of the boundary of the regular tree, we present a characterization on the trace spaces of those first order Orlicz-Sobolev spaces whose Young function is of the form \(t^p \log^\lambda(e + t)\), based on integral averages on dyadic elements of the dyadic decomposition.

MSC:

46E36 Sobolev (and similar kinds of) spaces of functions on metric spaces; analysis on metric spaces
05C05 Trees

References:

[1] Aronszajn, N., Boundary values of functions with finite Dirichlet integral (1955), University of Kansas, Techn. Report 14 · Zbl 0068.08201
[2] Björn, A.; Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math., vol. 17 (2011), European Mathematical Society: European Mathematical Society Zurich · Zbl 1231.31001
[3] Björn, A.; Björn, J.; Gill, J. T.; Shanmugalingam, N., Geometric analysis on Cantor sets and trees, J. Reine Angew. Math., 725, 63-114 (2017) · Zbl 1376.46025
[4] Björn, A.; Björn, J.; Shanmugalingam, N., The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math., 556, 173-203 (2003) · Zbl 1018.31004
[5] Bonk, M.; Heinonen, J.; Koskela, P., Uniformizing Gromov hyperbolic spaces, Astérisque, 270 (2001), viii+99 pp · Zbl 0970.30010
[6] Bonk, M.; Saksman, E., Sobolev spaces and hyperbolic fillings, J. Reine Angew. Math., 737, 161-187 (2018) · Zbl 1387.30087
[7] Bridson, M.; Haefliger, A., Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss., vol. 319 (1999), Springer-Verlag: Springer-Verlag Berlin · Zbl 0988.53001
[8] Cianchi, A., Orlicz-Sobolev boundary trace embeddings, Math. Z., 266, 2, 431-449 (2010) · Zbl 1208.46028
[9] Dhara, R. N.; Kałamajska, A., On one extension theorem dealing with weighted Orlicz-Slobodetskii space. Analysis on cube, Math. Inequal. Appl., 18, 1, 61-89 (2015) · Zbl 1334.46028
[10] Dhara, R. N.; Kałamajska, A., On one extension theorem dealing with weighted Orlicz-Slobodetskii space. Analysis on Lipschitz subgraph and Lipschitz domain, Math. Inequal. Appl., 19, 2, 451-488 (2016) · Zbl 1356.46029
[11] Dunford, N.; Schwartz, J., Linear Operators, Part I (1958), Interscience: Interscience New York · Zbl 0084.10402
[12] Fougères, A., Théorèmes de trace et de prolongement dans les espaces de Sobolev et Sobolev-Orlicz, C. R. Acad. Sci. Paris, Sér. A-B, 274, A181-A184 (1972) · Zbl 0226.46036
[13] Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. Padova, 27, 284-305 (1957) · Zbl 0087.10902
[14] Gogatishvili, A.; Koskela, P.; Shanmugalingam, N., Interpolation properties of Besov spaces defined on metric spaces, Math. Nachr., 283, 2, 215-231 (2010) · Zbl 1195.46033
[15] Gogatishvili, A.; Koskela, P.; Zhou, Y., Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces, Forum Math., 25, 4, 787-819 (2013) · Zbl 1278.42029
[16] Hajłasz, P., Sobolev space on metric-measure spaces, (Heat Kernels and Analysis on Manifolds, Graphs and Metric Spaces. Heat Kernels and Analysis on Manifolds, Graphs and Metric Spaces, Paris, 2002. Heat Kernels and Analysis on Manifolds, Graphs and Metric Spaces. Heat Kernels and Analysis on Manifolds, Graphs and Metric Spaces, Paris, 2002, Contemp. Math., vol. 338 (2003), American Mathematical Society: American Mathematical Society Providence), 173-218 · Zbl 1048.46033
[17] Hajłasz, P.; Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc., 688 (2000), x+101 pp · Zbl 0954.46022
[18] Heinonen, J., Lectures on Analysis on Metric Spaces, Universitext (2001), Springer-Verlag: Springer-Verlag New York, x+140 pp · Zbl 0985.46008
[19] Heinonen, J.; Koskela, P., Quasiconformal mappings in metric spaces with controlled geometry, Acta Math., 181, 1-61 (1998) · Zbl 0915.30018
[20] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J., Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients (2015), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1332.46001
[21] Jonsson, A.; Wallin, H., The trace to subsets of \(\mathbb{R}^n\) of Besov spaces in the general case, Anal. Math., 6, 223-254 (1980) · Zbl 0462.46024
[22] Jonsson, A.; Wallin, H., Function spaces on subsets of \(\mathbb{R}^n\), Math. Rep., 2, 1 (1984), xiv+221 pp · Zbl 0875.46003
[23] Karak, N., Measure density and embeddings of Hajłasz-Besov and Hajłasz-Triebel-Lizorkin spaces, J. Math. Anal. Appl., 475, 1, 966-984 (2019) · Zbl 1423.46053
[24] Koskela, P.; Nguyen, K. N.; Wang, Z., Trace and density results on regular trees · Zbl 1498.46049
[25] Koskela, P.; Soto, T.; Wang, Z., Traces of weighted function spaces: dyadic norms and Whitney extensions, Sci. China Math., 60, 11, 1981-2010 (2017) · Zbl 1406.46024
[26] Koskela, P.; Wang, Z., Dyadic norm Besov-type spaces as trace spaces on regular trees, Potential Anal. (2020), in press · Zbl 1464.46044
[27] Koskela, P.; Yang, D.; Zhou, Y., A characterization of Hajłasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions, J. Funct. Anal., 258, 8, 2637-2661 (2010) · Zbl 1195.46034
[28] Koskela, P.; Yang, D.; Zhou, Y., Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings, Adv. Math., 226, 4, 3579-3621 (2011) · Zbl 1217.46019
[29] Kufner, A.; John, O.; Fučík, S., Function Spaces, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis (1977), Noordhoff International Publishing/Academia: Noordhoff International Publishing/Academia Leyden/Prague, xv+454 pp · Zbl 0364.46022
[30] Lacroix, M.-Th., Caractérisation des traces dans les espaces de Sobolev-Orlicz, C. R. Acad. Sci. Paris, Sér. A-B, 274, A1813-A1816 (1972) · Zbl 0239.46026
[31] Lacroix, M.-Th., Espaces de traces des espaces de Sobolev-Orlicz, J. Math. Pures Appl. (9), 53, 439-458 (1974) · Zbl 0275.46027
[32] Lahti, P.; Li, X.; Wang, Z., Traces of Newton-Sobolev, Hajłasz-Sobolev, and BV functions on metric spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (2020), in press
[33] Lahti, P.; Shanmugalingam, N., Trace theorems for functions of bounded variation in metric spaces, J. Funct. Anal., 274, 10, 2754-2791 (2018) · Zbl 1392.26016
[34] Lizorkin, P. I., Boundary properties of functions from “weight” classes, Dokl. Akad. Nauk SSSR. Dokl. Akad. Nauk SSSR, Soviet Math. Dokl., 1, 589-593 (1960), (in Russian); translated as · Zbl 0106.30802
[35] Malý, L., Trace and extension theorems for Sobolev-type functions in metric spaces
[36] Malý, L.; Shanmugalingam, N.; Snipes, M., Trace and extension theorems for functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18, 1, 313-341 (2018) · Zbl 1406.46025
[37] Mironescu, P.; Russ, E., Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., 119, 354-381 (2015) · Zbl 1331.46025
[38] Orlicz, W., On certain properties of φ-functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8, 439-443 (1960) · Zbl 0101.09001
[39] Palmieri, G., An approach to the theory of some trace spaces related to the Orlicz-Sobolev spaces, Boll. Un. Mat. Ital. B (5), 16, 1, 100-119 (1979) · Zbl 0398.46026
[40] Palmieri, G., The traces of functions in a class of Sobolev-Orlicz spaces with weight, Boll. Un. Mat. Ital. B (5), 18, 1, 87-117 (1981) · Zbl 0462.46021
[41] Peetre, J., New Thoughts on Besov Spaces, Duke University Mathematics Series, vol. 1 (1976), Mathematics Department, Duke University: Mathematics Department, Duke University Durham, NC · Zbl 0356.46038
[42] Peetre, J., A counterexample connected with Gagliardo’s trace theorem, Comment. Math., 2, 277-282 (1979) · Zbl 0442.46026
[43] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 (1991), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0724.46032
[44] Saksman, E.; Soto, T., Traces of Besov, Triebel-Lizorkin and Sobolev spaces on metric spaces, Anal. Geom. Metr. Spaces, 5, 98-115 (2017) · Zbl 1394.46028
[45] Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 243-279 (2000) · Zbl 0974.46038
[46] Slobodetskii, L. N.; Babich, V. M., On boundedness of the Dirichlet integrals, Dokl. Akad. Nauk SSSR (N.S.), 106, 604-606 (1956), (in Russian) · Zbl 0072.05002
[47] Soto, T., Besov spaces on metric spaces via hyperbolic fillings
[48] Triebel, H., Theory of Function Spaces, Monographs in Mathematics, vol. 78 (1983), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0546.46028
[49] Triebel, H., The Structure of Functions, Monographs in Mathematics, vol. 97 (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0984.46021
[50] Tuominen, H., Orlicz-Sobolev spaces on metric measure spaces, Ann. Acad. Sci. Fenn. Math. Diss., 135 (2004), University of Jyväskylä: University of Jyväskylä Jyväskylä, 86 pp · Zbl 1068.46022
[51] Tyulenev, A. I., Description of traces of functions in the Sobolev space with a Muckenhoupt weight, Proc. Steklov Inst. Math., 284, 1, 280-295 (2014) · Zbl 1320.46034
[52] Tyulenev, A. I., Traces of weighted Sobolev spaces with Muckenhoupt weight. The case \(p = 1\), Nonlinear Anal., 128, 248-272 (2015) · Zbl 1346.46031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.