×

Algebraic Heun operator and band-time limiting. (English) Zbl 1405.33025

The authors introduce the algebraic Heun operator which can be obtained from any pair of bispectral operators and apply it to construct commute differential operators in the theory of time and band limiting. The algebraic Heun operator generalizes the ordinary one. The Heun operators are introduced through a simple bilinear Ansatz in terms of tridiagonal operators related to the Askey scheme and then the authors consider differential operators instead of tridiagonal matrices and study the commuting properties of these operators with projectors onto an interval. They apply their approach to the case of classical polynomials and extend it to Bannai-Ito polynomials and anti-Krawtchouk polynomials.

MSC:

33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
33D99 Basic hypergeometric functions
39B42 Matrix and operator functional equations

References:

[1] Askey R., Wilson J.A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, vol. 319. American Mathematical Society, Providence (1985) · Zbl 0572.33012
[2] Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin & Cummings, Mento Park (1984) · Zbl 0555.05019
[3] Baseilhac, P., Martin, X., Vinet, L., Zhedanov, A.: Little and big \(q\)-Jacobi polynomials and the Askey-Wilson algebra. (in preparation) · Zbl 1436.81070
[4] Borodin, A.; Olshanski, G., The ASEP and determinantal point processes, Commun. Math. Phys., 353, 853, (2017) · Zbl 1369.60031 · doi:10.1007/s00220-017-2858-1
[5] Castro, M.; Grünbaum, F. A., The Darboux process and time-and-band limiting for matrix orthogonal polynomials, Linear Algebra Appl., 487, 328-341, (2015) · Zbl 1326.33013 · doi:10.1016/j.laa.2015.09.012
[6] Duistermaat, J. J.; Grünbaum, F. A., Differential equations in the spectral parameter, Commun. Math. Phys., 103, 177-240, (1986) · Zbl 0625.34007 · doi:10.1007/BF01206937
[7] Genest, V., Vinet, L., Yu, G.-F., Zhedanov, A.: Supersymmetry of the quantum rotor. arXiv:1607.06967v1
[8] Genest, V.; Ismail, M. E.H.; Vinet, L.; Zhedanov, A., Tridiagonalization of the hypergeometric operator and the Racah-Wilson algebra, Proc. Am. Math. Soc., 144, 4441-4454, (2016) · Zbl 1351.33010 · doi:10.1090/proc/13082
[9] Granovskii, Y. A.; Lutzenko, I. M.; Zhedanov, A., Mutual integrability, quadratic algebras, and dynamical symmetry, Ann. Phys., 217, 1-20, (1992) · Zbl 0875.17002 · doi:10.1016/0003-4916(92)90336-K
[10] Grünbaum, F. A., A new property of reproducing kernels for classical orthogonal polynomials, J. Math. Anal. Appl., 95, 491-500, (1983) · Zbl 0562.33008 · doi:10.1016/0022-247X(83)90123-3
[11] Grünbaum, F.A.: The limited angle reconstruction problem in computed tomography. In: Shepp, L.(ed.) Proceedings of Symposia in Applied Mathematics, vol. 27, pp. 43-61. AMS, Providence (1982) · Zbl 0536.65094
[12] Grünbaum, F. A.; Vinet, L.; Zhedanov, A., Tridiagonalization and the Heun equation, J. Math. Phys., 58, 031703, (2017) · Zbl 1364.34126 · doi:10.1063/1.4977828
[13] Grünbaum, F. A., Band-time-band limiting integral operators and commuting differential operators, Algebra Anal., 8, 122-126, (1996) · Zbl 0878.47031
[14] Grünbaum, F. A.; Pacharoni, I.; Zurrian, I., Time and band limiting for matrix valued functions: an integral and a commuting differential operator, Inverse Probl., 33, 025005, (2007) · Zbl 1367.47078
[15] Grünbaum, F.A., Yakimov, M.: The prolate spheroidal phenomenon as a consequence of bispectrality. Superintegrability in classical and quantum systems. In: CRM Proceeding. Lecture Notes, vol. 37, pp. 301-312. American Mathematical Society, Providence (2004) · Zbl 1085.47056
[16] Hahn, W., On linear geometric difference equations with accessory parameters, Funkc. Ekvac., 14, 73-78, (1971) · Zbl 0234.39004
[17] Ismail M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications (No. 98). Cambridge University Press, Cambridge (2005) · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[18] Ismail, M. E.H.; Koelink, E., Spectral analysis of certain Schrödinger operators, SIGMA, 8, 61-79, (2012) · Zbl 1270.30003
[19] Ismail, M. E.H.; Koelink, E., The J-matrix method, Adv. Appl. Math., 56, 379-395, (2011) · Zbl 1216.33020 · doi:10.1016/j.aam.2010.10.005
[20] Katsnelson, V.: Selfadjoint boundary conditions for the prolate spheroidal differential operator. (2016) arXiv:1603.07542
[21] Katsnelson, V,., Machluf, R.: The truncated Fourier operator. Zh. Mat. Fiz. Anal. Geom. 8(2), 158-176, 208, 211 (2012) · Zbl 1286.47022
[22] Koekoek R., Lesky P.A., Swarttouw R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. 1st edn. Springer, New York (2010) · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[23] Landau, H. J., An Overview of Time and Frequency Limiting, 201-220, (1985), Boston, MA · doi:10.1007/978-1-4613-2525-3_12
[24] Landau, H. J.; Pollak, H. O., Prolate spheroidal wave functions, Fourier nalysis and uncertainty, II. Bell Syst. Tech. J., 40, 65-84, (1961) · Zbl 0184.08602 · doi:10.1002/j.1538-7305.1961.tb03977.x
[25] Landau, H.J., Pollak, H.O.: Prolate spheroical wave functions, Fourier nalysis and uncertainty, III. Bell Syst. Tech. J. 41(4), 1295-1336 (1962) · Zbl 0184.08603
[26] Leonard, D., Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal., 13, 656-663, (1982) · Zbl 0495.33006 · doi:10.1137/0513044
[27] Mehta M.L.: Random Matrices. 3rd edn. Elsevier Inc., Amsterdam (2004) · Zbl 1107.15019
[28] Nomura, K.; Terwilliger, P., Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair, Linear Algebra Appl., 420, 198-207, (2007) · Zbl 1119.05111 · doi:10.1016/j.laa.2006.07.004
[29] Osipov A., Rokhlin V., Xiao H.: Prolate Pheroidal Wave Functions of Order Zero, Mathematical Tools for Bandlimited Approximation. Springer, New York (2014) · Zbl 1287.65015
[30] Perline, R. K., Discrete time-band limiting operators and commuting tridiagonal matrices, SIAM. J. Algebr. Discrete Methods, 8, 192-195, (1987) · Zbl 0616.33010 · doi:10.1137/0608016
[31] Perline, Ronald K., Time-band limiting matrices and lamé’s equation, Numerical Functional Analysis and Optimization, 9, 1139-1175, (1988) · Zbl 0628.33010 · doi:10.1080/01630568808816278
[32] Perlstadt, M., A property of rthogonal polynomial families with polynomial duals, SIAM J. Math. Anal., 15, 1043-1054, (1984) · Zbl 0551.42008 · doi:10.1137/0515081
[33] Ronveaux, A.: Heun’s Differential Equations. Oxford University Press, Oxford (1995) · Zbl 0847.34006
[34] Shannon, C. E., A Mathematical Theory of Communication, Bell System Technical Journal, 27, 623-656, (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb00917.x
[35] Simons, F. J.; Dahlen, F. A., Spherical Slepian functions on the polar cap in geodesy, Geophys. J. Int., 166, 1039-1062, (2006) · doi:10.1111/j.1365-246X.2006.03065.x
[36] Slepian, D.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell Syst. Tech. J., 40, 43-64, (1961) · Zbl 0184.08601 · doi:10.1002/j.1538-7305.1961.tb03976.x
[37] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty, IV, Bell Syst. Tech. J., 43, 3009-3058, (1964) · Zbl 0184.08604 · doi:10.1002/j.1538-7305.1964.tb01037.x
[38] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty, V, Bell Syst. Tech. J., 57, 1371-1430, (1978) · Zbl 0378.33006 · doi:10.1002/j.1538-7305.1978.tb02104.x
[39] Slepian, D., Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., 25, 379-393, (1983) · Zbl 0571.94004 · doi:10.1137/1025078
[40] Takemura, K.: On q-deformations of Heun equation. arXiv:1712.09564 · Zbl 1395.39003
[41] Terwilliger, P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 330, 149-203, (2001) · Zbl 0980.05054 · doi:10.1016/S0024-3795(01)00242-7
[42] Tsujimoto, S.; Vinet, L.; Zhedanov, A., Dunkl shift operators and Bannai-Ito polynomials, Adv. Math., 229, 2123-2158, (2012) · Zbl 1248.33022 · doi:10.1016/j.aim.2011.12.020
[43] Tracy, C. A.; Widom, H., Level spacing distribution and the Airy kernel, Phys. Lett. B, 305, 115-118, (1993) · doi:10.1016/0370-2693(93)91114-3
[44] Tracy, C. A.; Widom, H., Level spacing distribution and the Bessel kernel, Commun. Math. Phys., 161, 289-309, (1994) · Zbl 0808.35145 · doi:10.1007/BF02099779
[45] Turbiner, A., The Heun operator as a Hamiltonian, J. Phys. A, 49, 26lt01, (2016) · Zbl 1344.81088 · doi:10.1088/1751-8113/49/26/26LT01
[46] Turbiner, A., One-dimensional quasi-exactly solvable Schrödinger equations, Phys. Rep., 642, 1-71, (2016) · Zbl 1359.81106 · doi:10.1016/j.physrep.2016.06.002
[47] Walter, G., Differential operators which commute with characteristic functions with applications to a lucky accident, Complex Var., 18, 7-12, (1992) · Zbl 0786.47038
[48] Zhedanov, A. S., “Hidden symmetry” of Askey-Wilson polynomials, Theoret. Math. Phys., 89, 1146-1157, (1991) · Zbl 0782.33012 · doi:10.1007/BF01015906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.