×

On new sequences converging towards the Ioachimescu’s constant. (English) Zbl 1421.11110

From the introduction: In 1895, A. G. Ioachimescu [Problem 16. Gaz. Mat. 1, No. 2, 39 (1895)] introduced a constant \(\ell\), which today bears his names, as the limit of the sequence defined by
\[ I_n = 1+ \frac 1{\sqrt 2}+ \ldots +\frac 1{\sqrt n} - 2(\sqrt{n} - 1),\quad n\in\mathbb N. \]
The sequence \(I(n)_{\ge1}\) has attracted much attention lately and several generalizations have been given. Recently, Chen, Li and Xu [C. Chen et al., Proc. Jangjeon Math. Soc. 13, No. 3, 299–304 (2010; Zbl 1245.11128)] have obtained the complete asymptotic expansion of the Ioachimescu sequence,
\[ I_n \sim \ell + \frac 1{2\sqrt n} - \sum_{k=1}^\infty \frac{B_{2k}}{(2k)!} \frac {(4k - 3)!!}{2^{2k-1}n^{2k-1/2}}, \quad n\in\mathbb N, \]
where \(B_n\) denotes the \(n\)-th Bernoulli number.
The purpose of this paper is to give some sequences that converge quickly to Ioachimescu’s constant related to Ramanujan formula by multiple-correction method. This method could be used to solve other problems, such as Euler-Mascheroni constant, Glaisher-Kinkelin’s and Bendersky-Adamchik’s constants, Somos’ quadratic recurrence constant, and so on.

MSC:

11Y60 Evaluation of number-theoretic constants
11A55 Continued fractions
41A25 Rate of convergence, degree of approximation

Citations:

Zbl 1245.11128
Full Text: DOI

References:

[1] Ioachimescu A.G.: Problem 16. Gaz. Mat. 1(2), 39 (1895)
[2] Sîntămărian A.: Some inequalities regarding a generalization of Ioachimescu’s constant. J. Math. Inequal. 4(3), 413-421 (2010) · Zbl 1239.40003 · doi:10.7153/jmi-04-38
[3] Sîntămărian A.: Regarding a generalisation of Ioachimescu’s constant. Math. Gaz. 94(530), 270-283 (2010) · Zbl 1239.40003 · doi:10.1017/S0025557200006537
[4] Chen C.P., Li L., Xu Y.Q.: Ioachimescu’s constant. Proc. Jangjeon Math. Soc. 13, 299-304 (2010) · Zbl 1245.11128
[5] Ramanujan S.: On the sum of the square roots of the first n natural numbers. J. Indian Math. Soc. 7, 173-175 (1915)
[6] Sîntămărian A.: A generalisation of Ioachimescu’s constant. Math. Gaz. 93(528), 456-467 (2009) · Zbl 1169.54022 · doi:10.1017/S0025557200185201
[7] Sîntămărian A.: Some sequences that converge to a generalization of Ioachimescu’s constant. Automat. Comput. Appl. Math. 18(1), 177-185 (2009)
[8] Sîntămărian A.: Sequences that converge to a generalization of Ioachimescu’s constant. Sci. Stud. Res., Ser. Math. Inform. 20(2), 89-96 (2010) · Zbl 1265.40014
[9] Sîntămărian A.: Sequences that converge quickly to a generalized Euler constant. Math. Comput. Modelling 53, 624-630 (2011) · Zbl 1217.33004 · doi:10.1016/j.mcm.2010.09.014
[10] Sîntămărian A.: Some new sequences that converge to a generalized Euler constant. Appl. Math. Lett. 25, 941-945 (2012) · Zbl 1277.40003 · doi:10.1016/j.aml.2011.10.040
[11] Mortici C., Villariono Mark B.: On the Ramanujan-Lodge harmonic number expansion. Appl. Math. Comput. 251, 423-430 (2015) · Zbl 1328.41008
[12] Mortici C., Chen C.-P.: On the harmonic number expansion by Ramanujan. J. Inequal. Appl. 2013, 222 (2013) · Zbl 1331.11119 · doi:10.1186/1029-242X-2013-222
[13] Mortici C., Berinde V.: New sharp estimates of the generalized Euler-Mascheroni constant. Math. Inequal. Appl. 16(1), 279-288 (2013) · Zbl 1259.33004
[14] Mortici C., Chen C.-P.: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 64(4), 391-398 (2012) · Zbl 1252.33002 · doi:10.1016/j.camwa.2011.03.099
[15] Mortici C.: Fast convergences toward Euler-Mascheroni constant. Comput. Appl. Math. 29(3), 479-491 (2010) · Zbl 1206.41019 · doi:10.1590/S1807-03022010000300009
[16] Mortici C.: On some Euler-Mascheroni type sequences. Comput. Math. Appl. 60(7), 2009-2014 (2010) · Zbl 1205.40006 · doi:10.1016/j.camwa.2010.07.038
[17] Mortici C.: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. (Singapore) 8(1), 99-107 (2010) · Zbl 1185.26047 · doi:10.1142/S0219530510001539
[18] Cao X.D., Xu H.M., You X.: Multiple-correction and faster approximation. J. Number Theory 149, 327-350 (2015) · Zbl 1369.11107 · doi:10.1016/j.jnt.2014.10.016
[19] Cao X.D.: Multiple-correction and continued fraction approximation. J. Math. Anal. Appl. 424, 1425-1446 (2015) · Zbl 1306.11099 · doi:10.1016/j.jmaa.2014.12.014
[20] Cao X.D., You X.: Multiple-correction and continued fraction approximation(II). Appl. Math. Comput. 261, 192-205 (2015) · Zbl 1397.11165
[21] Xu H.M., You X.: Continued fraction inequalities for the Euler-Mashcheroni constan. J. Inequal. Appl. 2014, 343 (2014) · Zbl 1332.11111 · doi:10.1186/1029-242X-2014-343
[22] You X.: Some new quicker convergences to Glaisher-Kinkelin’s and Bendersky-Adamchik’s constants. Appl. Math. Comput. 271, 123-130 (2015) · Zbl 1410.11139
[23] You X., Chen D.-R.: Improved continued fraction sequence convergent to the Somos’ quadratic recuurence constant. J. Math. Anal. Appl. 436, 513-520 (2016) · Zbl 1378.11109 · doi:10.1016/j.jmaa.2015.12.013
[24] You X., Huang S.Y., Chen D.-R.: Some new continued fraction sequence convergent to the Somos’ quadratic recurrence constant. J. Inequal. Appl. 2016, 91 (2016) · Zbl 1353.40001 · doi:10.1186/s13660-016-1035-y
[25] Mortici C.: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59(8), 2610-2614 (2010) · Zbl 1193.33003 · doi:10.1016/j.camwa.2010.01.029
[26] Mortici C.: Product approximations via asymptotic integration. Amer. Math. Month. 117(5), 434-441 (2010) · Zbl 1214.40002 · doi:10.4169/000298910x485950
[27] Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, Springer, Berlin (1988) · Zbl 0639.01023
[28] Karatsuba E.A.: On the asymptotic representation of the Euler gamma function by Ramanujan. J. Comput. Appl. Math. 135(2), 225-240 (2001) · Zbl 0988.33001 · doi:10.1016/S0377-0427(00)00586-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.