×

Explicit evaluations of sums of sequence tails. (English) Zbl 1399.11155

Consider two series \(\sum a_n\) and \(\sum b_n\) of complex numbers, convergent to \(A\) and \(B\), respectively, and denote by \(A_n := \sum_{i=1}^n a_i\) and \(B_n := \sum_{i=1}^n b_i\) the sequence of their partial sums. Also, for positive integers \(n\) and \(r\), define the partial sums of the Riemann zeta function by: \[ \zeta_n(r) := \sum_{k=1}^n\frac{1}{k^r} \] Mainly, the paper investigates the sums
\[ F_n(A, B; x) := \sum_{k=1}^n (A-A_k)(B-B_k)x^k \] and
\[ F(A, B; \zeta(r)) := \sum_{n=1}^\infty (A-A_n)(B-B_n)(\zeta(r) - \zeta_n(r)) \] and provides explicit formulas for both. The paper also provides several other identities, relating the harmonic numbers to multiple zeta values. Some other series, involving multiple zeta star values, are evaluated, as well.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M32 Multiple Dirichlet series and zeta functions and multizeta values

References:

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, University Press (Cambridge, 2000).
[2] D. H. Bailey, J. M. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, Exp. Math., 3 (1994), 17–30. · Zbl 0810.11076 · doi:10.1080/10586458.1994.10504573
[3] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math., 38 (1995), 277–294. · Zbl 0819.40003 · doi:10.1017/S0013091500019088
[4] J. M. Borwein, D. M. Bradley and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin., 4 (1997), 1–21. · Zbl 0884.40004
[5] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonk, Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 353 (2001), 907–941. · Zbl 1002.11093 · doi:10.1090/S0002-9947-00-02616-7
[6] J. M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, Electron. J. Combin., 3 (1996), 2–7. · Zbl 0884.40005
[7] M. Eie and C.-S. Wei, Evaluations of some quadruple Euler sums of even weight, Funct. Approx. Comment. Math., 46 (2012), 63–67. · Zbl 1243.40004 · doi:10.7169/facm/2012.46.1.5
[8] Ph. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math., 7 (1998), 15–35. · Zbl 0920.11061 · doi:10.1080/10586458.1998.10504356
[9] O. Furdui, Limits Series and Fractional Part Integrals: Problems in Mathematical Analysis, Problem Books in Mathematics, Springer (London, 2013). · Zbl 1279.26017
[10] O. Furdui and A. Sîntămărian, Quadratic series involving the tail of {\(\zeta\)}(k), Integral Transforms Spec. Funct., 26 (2015), 1–8. · Zbl 1327.40001 · doi:10.1080/10652469.2014.956311
[11] O. Furdui and C. Vălean, Evaluation of series involving the product of the tail of {\(\zeta\)}(k) and {\(\zeta\)}(k+1), Mediterr. J. Math., 13 (2016), 517–526. · Zbl 1351.11051 · doi:10.1007/s00009-014-0508-9
[12] M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275–290. · Zbl 0763.11037 · doi:10.2140/pjm.1992.152.275
[13] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra, 194 (1997), 477–495. · Zbl 0881.11067 · doi:10.1006/jabr.1997.7127
[14] M. E. Hoffman, Sums of products of Riemann zeta tails, Mediterr. J. Math., 13 (2016), 2771–2781. · Zbl 1352.11071 · doi:10.1007/s00009-015-0653-9
[15] I. Mezo, Nonlinear Euler sums, Pacific J. Math., 272 (2014), 201–226. · Zbl 1325.11089 · doi:10.2140/pjm.2014.272.201
[16] A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory, 154 (2015), 144–159. · Zbl 1310.05014 · doi:10.1016/j.jnt.2015.02.013
[17] A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J., 25 (2011), 93–113. · Zbl 1234.11022 · doi:10.1007/s11139-010-9228-3
[18] A. Sofo, Harmonic sums and integral representations, J. Appl. Anal., 16 (2010), 265–277. · Zbl 1276.11028 · doi:10.1515/jaa.2010.018
[19] C. Xu, Y. Yan and Zh. Shi, Euler sums and integrals of polylogarithm functions, J. Number Theory, 165 (2016), 84–108. · Zbl 1349.11054 · doi:10.1016/j.jnt.2016.01.025
[20] C. Xu, M. Zhang, W. Zhu, Some evaluation of q-analogues of Euler sums, Monatsh. Math., 182 (2017), 1–19. · Zbl 1358.05034 · doi:10.1007/s00605-016-0915-z
[21] C. Xu and Zh. Li, Tornheim type series and nonlinear Euler sums, J. Number Theory, 174 (2017), 40–67. · Zbl 1365.11099 · doi:10.1016/j.jnt.2016.10.002
[22] C. Xu, Multiple zeta values and Euler sums, J. Number Theory, 177 (2017), 443–478. · Zbl 1406.11089 · doi:10.1016/j.jnt.2017.01.018
[23] D. Zagier, Values of zeta functions and their applications, in: First European Congress of Mathematics, Volume II, Birkhauser (Boston, 1994), 497–512. · Zbl 0822.11001
[24] D. Zagier, Evaluation of the multiple zeta values {\(\zeta\)}(2,..., 2, 3, 2,..., 2), Ann. of Math., 2 (2012), 977–1000. · Zbl 1268.11121 · doi:10.4007/annals.2012.175.2.11
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.