×

Optimal bounds for the generalized Euler-Mascheroni constant. (English) Zbl 1497.11292

Summary: We provide several sharp upper and lower bounds for the generalized Euler-Mascheroni constant. As consequences, some previous bounds for the Euler-Mascheroni constant are improved.

MSC:

11Y60 Evaluation of number-theoretic constants
40A05 Convergence and divergence of series and sequences
33B15 Gamma, beta and polygamma functions

References:

[1] Knopp, K.: Theory and Applications of Infinite Series. Dover Publications, New York (1990)
[2] Chen, C.-P., Qi, F.: The best bounds of the n-th harmonic number. Glob. J. Appl. Math. Math. Sci. 1(1), 41-49 (2008)
[3] Niu, D.-W., Zhang, Y.-J., Qi, F.: A double inequality for the harmonic number in terms of the hyperbolic cosine. Turk. J. Anal. Number Theory 2(6), 223-225 (2014) · doi:10.12691/tjant-2-6-6
[4] Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521-537 (2018) · Zbl 1384.33034
[5] Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function. Math. Inequal. Appl. 21(3), 629-648 (2018) · Zbl 1402.30022
[6] Alzer, H.: Inequalities for the gamma and polygamma functions. Abh. Math. Semin. Univ. Hamb. 68, 363-372 (1998) · Zbl 0945.33003 · doi:10.1007/BF02942573
[7] Mortici, C.: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 23(1), 97-100 (2010) · Zbl 1183.33003 · doi:10.1016/j.aml.2009.08.012
[8] Mortici, C.: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. 8(1), 99-107 (2010) · Zbl 1185.26047 · doi:10.1142/S0219530510001539
[9] Mortici, C.: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215(9), 3443-3448 (2010) · Zbl 1186.11076
[10] Chen, C.-P., Srivastava, H.M.: New representations for the Lugo and Euler-Mascheroni constants. Appl. Math. Lett. 24(7), 1239-1244 (2011) · Zbl 1216.33005 · doi:10.1016/j.aml.2011.02.015
[11] Negoi, T.: A faster convergence to the constant of Euler. Gaz. Mat., Ser. A 15, 111-113 (1997)
[12] Qiu, S.-L., Vuorinen, M.: Some properties of the gamma and psi functions, with applications. Math. Comput. 74(250), 723-742 (2005) · Zbl 1060.33006 · doi:10.1090/S0025-5718-04-01675-8
[13] DeTemple, D.W.: A geometric look at sequences that converge to Euler’s constant. Coll. Math. J. 37(2), 128-131 (2006) · doi:10.2307/27646302
[14] Chen, C.-P.: The best bounds in Vernescu’s inequalities for the Euler’s constant. RGMIA Res. Rep. Collect. 12(3), Article ID 11 (2009)
[15] Sîntămărian, A.: A generalization of Euler’s constant. Numer. Algorithms 46(2), 141-151 (2007) · Zbl 1130.11075 · doi:10.1007/s11075-007-9132-0
[16] Berinde, V., Mortici, C.: New sharp estimates of the generalized Euler-Mascheroni constant. Math. Inequal. Appl. 16(1), 279-288 (2013) · Zbl 1259.33004
[17] Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3-4), 223-229 (2012). https://doi.org/10.1007/s00025-010-0090-9 · Zbl 1259.26035 · doi:10.1007/s00025-010-0090-9
[18] Guo, B.-N., Qi, F.: Sharp inequalities for the psi function and harmonic numbers. Analysis 34(2), 201-208 (2014) · Zbl 1294.33003
[19] Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729-735 (2017) · Zbl 1375.33026
[20] Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929-936 (2017) · Zbl 1412.33033 · doi:10.22436/jnsa.010.03.06
[21] Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautsch inequality for parameter 0<p<\(10< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107-1120 (2017) · Zbl 1386.33005
[22] Guo, B.-N., Qi, F.: Sharp bounds for harmonic numbers. Appl. Math. Comput. 218(3), 991-995 (2011) · Zbl 1229.11027
[23] Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469-479 (2018) · Zbl 1384.33008
[24] Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714-1726 (2018) · Zbl 1387.33029 · doi:10.1016/j.jmaa.2018.03.005
[25] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U. S. Government Printing Office, Washington (1964) · Zbl 0171.38503
[26] Chen, C.-P.: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 23(2), 161-164 (2010) · Zbl 1203.26025 · doi:10.1016/j.aml.2009.09.005
[27] Chen, C.-P.: Inequalities and monotonicity properties for some special functions. J. Math. Inequal. 3(1), 79-91 (2009) · Zbl 1177.33005 · doi:10.7153/jmi-03-07
[28] Chen, C.-P., Mortici, C.: Limits and inequalities associated with the Euler-Mascheroni constant. Appl. Math. Comput. 219(18), 9755-9761 (2013). https://doi.org/10.1016/j.amc.2013.03.089 · Zbl 1297.33002 · doi:10.1016/j.amc.2013.03.089
[29] Qiu, S.-L., Zhao, X.: Some properties of the psi function and evaluations of γ. Appl. Math. J. Chin. Univ. Ser. A 31(1), 103-111 (2016). https://doi.org/10.1007/s11766-016-3272-8 · Zbl 1363.33004 · doi:10.1007/s11766-016-3272-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.