×

The \(L^p\)-to-\(L^q\) compactness of commutators with \(p > q\). (English) Zbl 1539.47075

Summary: Let \(1 < q < p < \infty\), \(1/r:=1/q-1/p\), and \(T\) be a non-degenerate Calderón-Zygmund operator. We show that the commutator \([b,T]\) is compact from \(L^p(\mathbb{R}^n)\) to \(L^q(\mathbb{R}^n)\) if and only if \(b=a+c\) with \(a\in L^r(\mathbb{R}^n)\) and \(c\) a constant. Since neither the corresponding Hardy-Littlewood maximal operator nor the corresponding Calderón-Zygmund maximal operator is bounded from \(L^p(\mathbb{R}^n)\) to \(L^q(\mathbb{R}^n)\), we take the full advantage of the compact support of the approximation element in \(C_{\mathrm{c}}^\infty (\mathbb{R}^n)\), which seems to be redundant for many corresponding estimates when \(p\leq q\) but is crucial when \(p > q\). We also extend the results to the multilinear case.

MSC:

47B90 Operator theory and harmonic analysis
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] E. Airta, T. Hytönen, K. Li, H. Martikainen and T. Oikari, Off-diagonal estimates for bi-commutators, Int. Math. Res. Notices 2022, 18766-18832. · Zbl 1505.42015
[2] A. Bényi, W. Damián, K. Moen and R. H. Torres, Compact bilinear commutators: the weighted case, Michigan Math. J. 64 (2015), 39-51. · Zbl 1315.42010
[3] P. Chen, X.-T. Duong, J. Li and Q. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal. 277 (2019), 1639-1676. · Zbl 1423.43003
[4] P. Chen, M. Lacey, J. Li and M. N. Vempati, Compactness of the Bloom sparse operators and applications, arXiv:2204.11990 (2022).
[5] Y. Chen and J. Li, Quantitative weighted bounds for Calderón commutators with rough kernels, Studia Math. 263 (2022), 339-360. · Zbl 1485.42022
[6] Y. Chen and Z. Guo, An extension of Calderón-Zygmund type singular integral with non-smooth kernel, J. Funct. Anal. 281 (2021), art. 109196, 21 pp. · Zbl 1479.42035
[7] Y. Chen and L. Wang, L 2 (R n ) boundedness for Calderón commutator with rough variable kernel, Front. Math. China 13 (2018), 1013-1031. · Zbl 1402.42012
[8] A. Clop and V. Cruz, Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math. 38 (2013), 91-113. · Zbl 1286.30020
[9] R. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286. · Zbl 0864.42009
[10] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), 611-635. · Zbl 0326.32011
[11] W. Damián, M. Hormozi and K. Li, New bounds for bilinear Calderón-Zygmund operators and applications, Rev. Mat. Iberoamer. 34 (2018), 1177-1210. · Zbl 1406.42017
[12] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math. 29, Amer. Math. Soc., Prov-idence, RI, 2001. · Zbl 0969.42001
[13] X.-T. Duong, R. Gong, M.-J. S. Kuffner, J. Li, B. D. Wick and D. Yang, Two weight commutators on spaces of homogeneous type and applications, J. Geom. Anal. 31 (2021), 980-1038. · Zbl 1460.42031
[14] X.-T. Duong, H. Li, J. Li and B. D. Wick, Lower bound of Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups, J. Math. Pures Appl. (9) 124 (2019), 273-299. · Zbl 1415.43002
[15] W. Guo, J. He, H. Wu and D. Yang, Boundedness and compactness of commutators associated with Lipschitz functions, Anal. Appl. (Singap.) 20 (2022), 35-71. · Zbl 1485.42025
[16] T. Hytönen, The L p -to-L q boundedness of commutators with applications to the Ja-cobian operator, J. Math. Pures Appl. (9) 156 (2021), 351-391. · Zbl 1478.42012
[17] T. Hytönen and S. Lappas, Extrapolation of compactness on weighted spaces, Rev. Mat. Iberoamer. 39 (2023), 91-122. · Zbl 1517.47062
[18] T. Hytönen and S. Lappas, Extrapolation of compactness on weighted spaces: Bilinear operators, Indag. Math. (N.S.) 33 (2022), 397-420. · Zbl 1511.47065
[19] T. Hytönen, T. Oikari and J. Sinko, Fractional Bloom boundedness and compactness of commutators, Forum Math. 35 (2023), 809-830. · Zbl 1514.42015
[20] T. Iwaniec, Nonlinear commutators and Jacobians, J. Fourier Anal. Appl. 3 (1997), 775-796. · Zbl 0915.42007
[21] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. · Zbl 0102.04302
[22] S. G. Krantz and S. Y. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications. II, J. Math. Anal. Appl. 258 (2001), 642-657. · Zbl 0990.47043
[23] M. Lacey and J. Li, Compactness of commutator of Riesz transforms in the two weight setting, J. Math. Anal. Appl. 508 (2022), art. 125869, 11 pp. · Zbl 1479.42040
[24] K. Li, Multilinear commutators in the two-weight setting, Bull. London Math. Soc. 54 (2022), 568-589. · Zbl 1520.42008
[25] K. Li, Sparse domination theorem for multilinear singular integral operators with L r -Hörmander condition, Michigan Math. J. 67 (2018), 253-265. · Zbl 1393.42014
[26] S. Lindberg, A note on the Jacobian problem of Coifman, Lions, Meyer and Semmes, arXiv:2208.13576 (2022).
[27] S. Lindberg, On the Hardy space theory of compensated compactness quantities, Arch. Ration. Mech. Anal. 224 (2017), 709-742. · Zbl 1373.46026
[28] S. Nakamura and Y. Sawano, The singular integral operator and its commutator on weighted Morrey spaces, Collect. Math. 68 (2017), 145-174. · Zbl 1375.42020
[29] T. Nogayama and Y. Sawano, Compactness of the commutators generated by Lipschitz functions and fractional integral operators, Mat. Zametki 102 (2017), 749-760 (in Russian). · Zbl 1387.42018
[30] Y. Sawano and H. Yoshida, A predual of a predual of Bσ and its applications to commutators, Sci. China Math. 61 (2018), 1437-1472. · Zbl 1400.26017
[31] J. Tao, Q. Xue, D. Yang and W. Yuan, XMO and weighted compact bilinear commu-tators, J. Fourier Anal. Appl. 27 (2021), art. 60, 34 pp. · Zbl 1470.42025
[32] J. Tao, Da. Yang and Do. Yang, A new vanishing Lipschitz-type subspace of BMO and bilinear compact commutators, Math. Ann. 386 (2023), 495-531. · Zbl 1521.42021
[33] J. Tao, D. Yang, W. Yuan and Y. Zhang, Compactness characterizations of commu-tators on ball Banach function spaces, Potential Anal. 58 (2023), 645-679. · Zbl 07673632
[34] M. Tsuji, On the compactness of space L p (p > 0) and its application to integral operators, Kodai Math. Sem. Rep. 101 (1951), 33-36. · Zbl 0044.10701
[35] A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J. (2) 30 (1978), 163-171. · Zbl 0384.47023
[36] Q. Xue, K. Yabuta, and J. Yan, Weighted Fréchet-Kolmogorov theorem and compact-ness of vector-valued multilinear operators, J. Geom. Anal. 31 (2021), 9891-9914. · Zbl 1471.42040
[37] K. Yosida, Functional Analysis, Classics in Math., Springer, Berlin, 1995. Tuomas Hytönen Department of Mathematics and Statistics University of Helsinki
[38] Helsinki, Finland E-mail: tuomas.
[39] Wuhan, People’s Republic of China E-mail: jintao@hubu.edu.cn Kangwei Li Center for Applied Mathematics Tianjin University
[40] Tianjin, People’s Republic of China E-mail: kli@tju.edu.cn
[41] Beijing, People’s Republic of China E-mail: dcyang@bnu.edu.cn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.