×

The non-unique existence of Rayleigh waves in nonlocal elastic half-spaces. (English) Zbl 1537.74182

Summary: It is well known that for the local isotropic elastic half-spaces, there always exists a unique Rayleigh wave. However, as shown in this paper, for the nonlocal isotropic elastic half-spaces, the existence picture of Rayleigh waves is more complicated. It contains the domains (of the material and nonlocality parameter) for which only one Rayleigh wave can propagate, the domains that support exactly two Rayleigh waves and the domains where three Rayleigh waves are possible. When two or three Rayleigh waves exist, one wave is the counterpart of the local (classical) Rayleigh wave, the other waves are new Rayleigh modes. Remarkably, the new modes can travel with high velocity at small wave numbers. The existence results are proved by employing the complex function method. The formulas for the wave velocity of Rayleigh waves have also been derived and they will be useful in various practical applications.

MSC:

74J10 Bulk waves in solid mechanics
74H20 Existence of solutions of dynamical problems in solid mechanics
74B99 Elastic materials
74S70 Complex-variable methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Rayleigh, L., On waves propagating along the plane surface of an elastic solid, Proc. R. Soc. Lond. A, 17, 4-11 (1985) · JFM 17.0962.01
[2] White, RM; Voltmer, FM, Direct piezoelectric coupling to surface elastic waves, Appl. Phys. Lett., 7, 314-316 (1965) · doi:10.1063/1.1754276
[3] Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991) · doi:10.1038/354056a0
[4] Yan, JW; Liew, KM; He, LH, A higher-order gradient theory for modeling of the vibration behavior of single-wall carbon nanocones, Appl. Math. Model., 38, 2946-2960 (2014) · doi:10.1016/j.apm.2013.11.010
[5] Eringen, AC, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703-4710 (1983) · doi:10.1063/1.332803
[6] Singh, B., Propagation of waves in an incompressible rotating transversely isotropic nonlocal solid, Vietnam J. Mech., 43, 237-252 (2021)
[7] Pramanik, AS; Biswas, S., Surface waves in nonlocal thermoelastic medium with state space approach, J. Therm. Stresses, 43, 667-686 (2020) · doi:10.1080/01495739.2020.1734129
[8] Abd-Alla, AM; Abo-Dahab, SM; Ahmed, SM; Rashid, MM, Effect of magnetic field and voids on Rayleigh waves in a nonlocal thermoelastic half-space, J. Strain Anal. Eng. Des. (2021) · Zbl 1522.74033 · doi:10.1177/03093247211001243
[9] Khurana, A.; Tomar, SK, Rayleigh-type waves in nonlocal micropolar solid half-space, Ultrasonics, 73, 162-168 (2017) · doi:10.1016/j.ultras.2016.09.005
[10] Sing, K., Shruti.: Rayleigh waves with impedence boundary conditions in a nonlocal micropolar thermoelastic material. J. Phys. Conf. Ser. 1531, 012048 (2020). doi:10.1088/1742-6596/1531/1/012048
[11] Tong, LH; Lai, SK; Zeng, LL; Xu, CJ; Yang, J., Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials, Int. J. Mech. Sci., 148, 459-466 (2018) · doi:10.1016/j.ijmecsci.2018.08.028
[12] Kaur, G.; Singh, D.; Tomer, SK, Rayleigh-type wave in a nonlocal elastic solid with voids, Eur. J. Mech./A Solids, 71, 134-150 (2018) · Zbl 1406.74353 · doi:10.1016/j.euromechsol.2018.03.015
[13] Kaur, B.; Singh, B., Rayleigh-type surface wave in nonlocal isotropic diffusive materials, Acta Mech., 232, 3407-3416 (2021) · Zbl 1485.74046 · doi:10.1007/s00707-021-03016-2
[14] Biswas, S., Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space, Acta Mech., 231, 4129-4144 (2020) · Zbl 1451.74114 · doi:10.1007/s00707-020-02751-2
[15] Lata, P.; Singh, S., Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer, GEM-Int. J. Geomath., 13, 5 (2022) · Zbl 1494.74040 · doi:10.1007/s13137-022-00195-5
[16] Barnett, DM; Lothe, J., Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method, Proc. R. Soc. Lond. A, 402, 135-152 (1985) · Zbl 0587.73030 · doi:10.1098/rspa.1985.0111
[17] Mielke, A.; Fu, YB, Uniqueness of the surface-wave speed: a proof that is independent of the Stroh formalism, Math. Mech. Solids, 9, 5-15 (2004) · Zbl 1043.74025 · doi:10.1177/108128604773685220
[18] Vinh, PC; Ogden, RW, On formulas for the Rayleigh wave speed, Wave Motion, 39, 191-197 (2004) · Zbl 1163.74454 · doi:10.1016/j.wavemoti.2003.08.004
[19] Muskhelishvili, NI, Singular Intergral Equations (1953), Groningen: Noordhoff, Groningen · Zbl 0051.33203
[20] Henrici, P., Applied and Computational Complex Analysis (1986), New York: Wiley, New York · Zbl 0578.30001
[21] Vinh, PC; Xuan, NQ, Rayleigh waves with impedance boundary condition: formula for the velocity, existence and uniqueness, Eur. J. Mech.-A/Solids, 61, 180-185 (2017) · Zbl 1406.74356 · doi:10.1016/j.euromechsol.2016.09.011
[22] Nkemzi, D., A new formula for the velocity of Rayleigh waves, Wave Motion, 26, 199-205 (1997) · Zbl 0954.74529 · doi:10.1016/S0165-2125(97)00004-8
[23] Romeo, M., Non-dispersive and dispersive electromagnetoacoustic SH surface modes in piezoelectric media, Wave Motion, 39, 93-110 (2004) · Zbl 1163.74433 · doi:10.1016/j.wavemoti.2003.07.005
[24] Vinh, PC; Giang, PTH, On formulas for the velocity of Stoneley waves propagating along the loosely bonded interface of two elastic half-spaces, Wave Motion, 48, 646-656 (2011) · Zbl 1239.74038 · doi:10.1016/j.wavemoti.2011.05.002
[25] Vinh, PC; Malischewsky, PG; Giang, PTH, Formulas for the speed and slowness of Stoneley waves in bonded isotropic elastic half-spaces with the same bulk wave velocities, Int. J. Eng. Sci., 60, 53-58 (2012) · Zbl 1423.74433 · doi:10.1016/j.ijengsci.2012.05.002
[26] Vinh, PC, Scholte-wave velocity formulae, Wave Motion, 50, 180-190 (2013) · Zbl 1360.76313 · doi:10.1016/j.wavemoti.2012.08.006
[27] Giang, PTH; Vinh, PC; Anh, VTN, Formulas for the slowness of Stoneley waves with sliding contact, Arch. Mech., 72, 465-481 (2020) · Zbl 1456.74080
[28] Giang, PTH; Vinh, PC, Existence and uniqueness of Rayleigh waves with normal impedance boundary conditions and formula for the wave velocity, J. Eng. Math., 130, 13 (2021) · Zbl 1503.74058 · doi:10.1007/s10665-021-10170-y
[29] Giang, PTH; Vinh, PC; Tuan, TT; Anh, VTN, Electromagnetoacoustic SH waves: formulas for the velocity, existence and uniqueness, Wave Motion, 105 (2021) · Zbl 1524.74231 · doi:10.1016/j.wavemoti.2021.102757
[30] Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions: Construction and Applications. Walter de Gruyter GmbH & Co. KG, Berlin (2012) · Zbl 1238.35002
[31] Anh, V.T.N., Vinh, P.C.: Expressions of nonlocal quantities and application to Stoneley waves in weakly nonlocal orthotropic elastic half-spaces. Math. Mech. Solids (2023). doi:10.1177/10812865231164332
[32] Muskhelishvili, NI, Some Basic Problems of Mathematical Theory of Elasticity (1963), Groningen: Noordhoff, Groningen · Zbl 0124.17404
[33] Henrici, P., Applied and Computational Complex Analysis (1974), New York: Wiley, New York · Zbl 0313.30001
[34] Cowles, WH; Thompson, JE, Algebra (1947), New York: Van Nostrand, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.