×

Numerical simulation to study the pattern formation of reaction-diffusion Brusselator model arising in triple collision and enzymatic. (English) Zbl 1394.92153

Summary: This article studies the pattern formation of reaction-diffusion Brusselator model along with Neumann boundary conditions arising in chemical processes. To accomplish this work, a new modified trigonometric cubic B-spline functions based differential quadrature algorithm is developed which is more general than [R. C. Mittal and R. Jiwari, Appl. Math. Comput. 217, No. 12, 5404–5415 (2011; Zbl 1209.65102); R. Jiwari and J. Yuan, J. Math. Chem. 52, No. 6, 1535–1551 (2014; Zbl 1296.92252)]. The reaction-diffusion model arises in enzymatic reactions, in the formation of ozone by atomic oxygen via a triple collision, and in laser and plasma physics in multiple couplings between modes. The algorithm converts the model into a system of ordinary differential equations and the obtained system is solved by Runge-Kutta method. To check the precision and performance of the proposed algorithm four numerical problems are contemplated and computed results are compared with the existing methods. The computed results pamper the theory of Brusselator model that for small values of diffusion coefficient, the steady state solution converges to equilibrium point \(( {\mu, \lambda /\mu})\) if \(1-\lambda +\mu^{2}>0\).

MSC:

92E20 Classical flows, reactions, etc. in chemistry
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
91A15 Stochastic games, stochastic differential games
Full Text: DOI

References:

[1] Turing, AM, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond.-Ser. B: Biol. Sci., 237, 37-72, (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[2] Lefever, R; Nicolis, G, Chemical instabilities and sustained oscillations, J. Theor. Biol., 30, 267, (1971) · Zbl 1170.92344 · doi:10.1016/0022-5193(71)90054-3
[3] G. Nicolis, I. Prigogine, Self-Organization in Non-equilibrium Systems (Wiley, New York, 1977) · Zbl 0363.93005
[4] Prigogine, I; Lefever, R, Symmetries breaking instabilities in dissipative systems II, J. Phys. Chem., 48, 1695-1700, (1968) · doi:10.1063/1.1668896
[5] Tyson, J, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys., 58, 3919, (1973) · doi:10.1063/1.1679748
[6] Zegeling, PA; Kok, HP, Adaptive moving mesh computations for reaction-diffusion systems, J. Comput. Appl. Math., 168, 519-528, (2004) · Zbl 1052.65086 · doi:10.1016/j.cam.2003.06.013
[7] Twizell, EH; Gumel, AB; Cao, Q, A second-order scheme for the brusselator’ reaction-diffusion system, J. Math. Chem., 26, 297-316, (1999) · Zbl 1016.92049 · doi:10.1023/A:1019158500612
[8] Adomian, G, The diffusion-Brusselator equation, Comput. Math. Appl., 29, 1-3, (1995) · Zbl 0827.35056 · doi:10.1016/0898-1221(94)00244-F
[9] Wazwaz, AM, The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model, Appl. Math. Comput., 110, 251-264, (2000) · Zbl 1023.65109
[10] Ang, WT, The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution, Eng. Anal. Bound Elem., 27, 897-903, (2003) · Zbl 1060.76599 · doi:10.1016/S0955-7997(03)00059-6
[11] Siraj-ul-Islam, A. Ali, S. Haq, A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 34, 3896-3909 (2010) · Zbl 1201.65185
[12] Verwer, JG; Hundsdorfer, WH; Sommeijer, BP, Convergence properties of the Runge-Kutta-Chebyshev method, Numer. Math., 57, 157-178, (1990) · Zbl 0697.65072 · doi:10.1007/BF01386405
[13] Kumar, S; Khan, Y; Yildirim, A, A mathematical modeling arising in the chemical systems and its approximate numerical solution, Asia-Pac. J. Chem. Eng., 7, 835-840, (2012) · doi:10.1002/apj.647
[14] Dehghan, M; Abbaszadeh, M, Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion., Comput. Methods Appl. Mech. Engrg, 300, 770-797, (2016) · Zbl 1425.65108 · doi:10.1016/j.cma.2015.11.033
[15] Mittal, RC; Jiwari, R, Numerical study of two-dimensional reaction-diffusion Brusselator system, Appl. Math. Comput., 217, 5404-5415, (2011) · Zbl 1209.65102
[16] Jiwari, R; Yuan, J, A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes, J. Math. Chem., 52, 1535-1551, (2014) · Zbl 1296.92252 · doi:10.1007/s10910-014-0333-1
[17] C. Shu, Differential Quadrature and its Application in Engineering (Athenaeum Press Ltd., Cambridge, 2000) · Zbl 0944.65107 · doi:10.1007/978-1-4471-0407-0
[18] Korkmaz, A; Dağ, İ, Shock wave simulations using sinc differential quadrature method, Eng. Comput., 28, 654-674, (2011) · Zbl 1284.76292 · doi:10.1108/02644401111154619
[19] Korkmaz, A; Dağ, İ, A differential quadrature algorithm for nonlinear Schrödinger equation, Nonlinear Dynam., 56, 69-83, (2009) · Zbl 1172.65381 · doi:10.1007/s11071-008-9380-0
[20] Mittal, RC; Jiwari, R, Differential quadrature method for two dimensional burgers’ equations, Int. J. Comput. Methods Eng. Sci. Mech., 10, 450-459, (2009) · Zbl 1423.35314 · doi:10.1080/15502280903111424
[21] Jiwari, R; Pandit, S; Mittal, RC, Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method, Comput. Phys. Commun., 183, 600-616, (2012) · Zbl 1264.65173 · doi:10.1016/j.cpc.2011.12.004
[22] Jiwari, R; Pandit, S; Mittal, RC, A differential quadrature algorithm to solve the two dimensional linear hyperbolic equation with Dirichlet and Neumann boundary conditions, Appl. Math. Comput., 218, 7279-7294, (2012) · Zbl 1246.65174
[23] Mittal, RC; Jiwari, R, A differential quadrature method for numerical solutions of burgers’-type equations, Int. J. Numer. Methods Heat Fluid Flow, 22, 880-895, (2012) · Zbl 1357.65220 · doi:10.1108/09615531211255761
[24] Dehghan, M; Nikpour, A, Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method, Appl. Math. Model., 37, 8578-8599, (2013) · Zbl 1426.65113 · doi:10.1016/j.apm.2013.03.054
[25] Rosaa, MA; Lippiello, M; Jiwari, R; Tomasiello, S, A differential quadrature based procedure for parameter identification, Appl. Math. Comput., 290, 460-466, (2016) · Zbl 1410.74087
[26] Alshomrani, A; Pandit, S; Alzahrani, AK; Alghamdi, MS; Jiwari, R, A numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic type wave equations, Eng. Comput., 34, 1257-1276, (2017) · doi:10.1108/EC-05-2016-0179
[27] Jiwari, R, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions, Comput. Phys. Commun., 193, 55-65, (2015) · Zbl 1344.41001 · doi:10.1016/j.cpc.2015.03.021
[28] Mittal, RC; Rohila, R, Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method, Chaos Solitons Fract., 92, 9-19, (2016) · Zbl 1372.65285 · doi:10.1016/j.chaos.2016.09.007
[29] Jiwari, R; Singh, S; Kumar, A, Numerical simulation to capture the pattern formation of coupled reaction-diffusion models, Chaos Solitons Fract., 103, 422-439, (2017) · Zbl 1380.65317 · doi:10.1016/j.chaos.2017.06.023
[30] Sun, M; Tan, Y; Chen, L, Dynamical behaviors of the Brusselator system with impulsive input, J. Math. Chem., 44, 637-649, (2008) · Zbl 1217.37084 · doi:10.1007/s10910-008-9362-y
[31] Gumel, AB; Langford, WF; Twizell, EH; Wu, J, Numerical solutions for a coupled non-linear oscillator, J. Math. Chem., 28, 325-340, (2000) · Zbl 1017.92051 · doi:10.1023/A:1011025104111
[32] Kumar, S; Khan, Y; Yaldirim, A, A mathematical modeling arising in the chemical systems and its approximate numerical solution, Asia-Pac. J. Chem. Eng., 7, 835-840, (2012) · doi:10.1002/apj.647
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.