×

The plane waves of generalized thermo-microstretch porous medium with temperature-dependent elastic properties under three theories. (English) Zbl 1501.74039

Summary: This paper employs various generalized theories of thermoelasticity to study how a microstretched medium consisting of voids has temperature dependency over it and is affected by relaxation time. It leads to the formation of ruling equations, and the application of normal mode analysis helps to determine various variables such as expressions of displacement components, components of the first moment and micro-rotation as well as couple stress, fields of temperature, components representing variation in volume fraction field and stress, etc. Also, it was made sure that the Lord Shulman theory, the coupled theory, and the Green Lindsay theory, where the prior two contain one relaxation time and the latter contains two relaxation times, have been utilized for result validation by comparing the attained results of thermal changes to these theories. Thus, the graphical illustration of these comparisons helps determine the impact that void parameters and relaxation times create along with conclusions regarding their temperature dependency. Some particular cases of interest are deducted from the present investigation.

MSC:

74J05 Linear waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Biot, M., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253 (1956) · Zbl 0071.41204 · doi:10.1063/1.1722351
[2] Lord, HW; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Sol., 15, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[3] Green, AE; Lindsay, KA, Thermoelasticity, J. Elast., 2, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[4] Ignaczak, J.; Ostoja-Starzewski, M., Thermoelasticity with Finite Wave Speeds (2009), Oxford: Oxford University Press, Oxford · Zbl 1183.80001 · doi:10.1093/acprof:oso/9780199541645.001.0001
[5] Othman, MIA; Abd-Elaziz, EM, Effect of initial stress and hall current on amagneto-thermoelastic porous medium with micro-temperatures, Ind. J. Phys., 93, 4, 475-485 (2019) · doi:10.1007/s12648-018-1313-2
[6] Youssef, HM; El-Bary, AA, Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories-state-space approach, J. Therm. Stress., 32, 12, 1293-1309 (2009) · doi:10.1080/01495730903249276
[7] Othman, MIA; Abd-Elaziz, EM, Influence of gravity and microtemperatures on the thermoelastic porous medium under three theories, Int. J. Numer. Methods Heat Fluid Flow, 29, 9, 3242-3262 (2019) · doi:10.1108/HFF-12-2018-0763
[8] Othman, MIA; Song, YQ, The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation, Acta Mech., 184, 1, 189-204 (2006) · Zbl 1096.74032 · doi:10.1007/s00707-006-0337-4
[9] Othman, MIA; Tantawi, RS, The effect of laser pulse and gravity field on thermoelastic medium under Green-Naghdi theory, Acta Mech., 227, 12, 3571-3583 (2016) · Zbl 1433.74024 · doi:10.1007/s00707-016-1683-5
[10] Alharbi, AM; Said, SM; Abd-Elaziz, EM; Othman, MIA, Mathematical model for a magneto-thermoelastic micropolar medium with temperature-dependent material moduli under the effect of mechanical strip load, Acta Mech., 232, 6, 2331-2346 (2021) · Zbl 1487.74036 · doi:10.1007/s00707-021-02941-6
[11] Chandrasekharaiah, DS, Heat flux dependent micropolar thermoelasticity, Int. J. Eng. Sci., 24, 8, 1389-1395 (1986) · Zbl 0594.73010 · doi:10.1016/0020-7225(86)90067-4
[12] Eringen, AC, Linear theory of micropolar elasticity, J. Math. Mech., 15, 909-923 (1966) · Zbl 0145.21302
[13] Eringen, AC, Micropolar elastic solids with stretch, Ari Kitabevi Matbassi, Istanbul, 24, 1-18 (1971)
[14] Eringen, AC, Theory of thermo-microstretch elastic solids, Int. J. Eng. Sci., 28, 12, 1291-1301 (1990) · Zbl 0718.73014 · doi:10.1016/0020-7225(90)90076-U
[15] Bofill, F.; Quintanilla, R., Some qualitative results for the linear theory of thermo-microstretch-elastic solids, Int. J. Eng. Sci., 33, 14, 2115-2125 (1995) · Zbl 0899.73463 · doi:10.1016/0020-7225(95)00048-3
[16] Kumar, R.; Garg, SK; Ahuja, S., Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half space, Latin Am. J. Sol. Struct., 10, 1081-1108 (2013) · doi:10.1590/S1679-78252013000600002
[17] Othman, MIA; Atwa, SY; Jahangir, A.; Khan, A., Effect of magnetic field and rotation on generalized thermo-microstretch elastic solid with mode-I crack under the Green Naghdi theory, Comp. Math. Model., 24, 566-591 (2013) · Zbl 1308.74122 · doi:10.1007/s10598-013-9200-3
[18] Othman, MIA; Atwa, SY; Jahangir, A.; Khan, A., The effect of gravity onplane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation, Mech. Adv. Mater. Struct., 22, 945-955 (2015) · doi:10.1080/15376494.2014.884657
[19] Othman, MIA; Abd-Elaziz, EM; Mohamed, IEA, Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse, Struct. Eng. Mech. An Ntl. J., 75, 2, 133-144 (2020) · doi:10.12989/sem.2020.75.2.133
[20] Othman, MIA; Zidan, MEM; Mohamed, IEA, Dual-phase-lag model on thermo-microstretch elastic solid under the effect of initial stress and temperature-dependent, Steel. Compos. Struct. An Intl. J., 38, 4, 355-363 (2021) · doi:10.12989/scs.2021.38.4.355
[21] Hobiny, A.; Alzahrani, F.; Abbas, IA; Marin, M., The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation, Symmetry, 12, 4, 602 (2020) · doi:10.3390/math8071128
[22] Bhatti, MM; Marin, M.; Zeeshan, A.; Abdelsalam, SI, Recent trends in computational fluid dynamics, Front. Phys. (2020) · doi:10.3389/fphy.2020.593111
[23] Abouelregal, AE; Marin, M., The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Math (2020) · doi:10.3390/math8071128
[24] Cowin, SC; Nunziato, JW, Linear elastic materials with voids, J. Elast., 13, 125-147 (1983) · Zbl 0523.73008 · doi:10.1007/BF00041230
[25] Puri, P.; Cowin, SC, Plane waves in linear elastic materials with voids, J. Elast, 15, 2, 167-183 (1985) · Zbl 0564.73027 · doi:10.1007/BF00041991
[26] Marin, M.; Othman, MIA; Abbas, IA, An extension of the domain of influence theorem for anisotropic thermoelastic material with voids, J. Comput. Theor. Nanosci., 12, 8, 1594-1598 (2015) · doi:10.1166/jctn.2015.3934
[27] Abd-Elaziz, EM; Marin, M.; Othman, MIA, On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory, Symmetry Appl. Contin. Mech., 11, 3, 413-430 (2019) · Zbl 1425.74170 · doi:10.3390/sym11030413
[28] Zorammuana, C.; Singh, SS, Elastic waves in thermoelastic saturated porous medium, Meccanica, 51, 593-609 (2016) · Zbl 1339.76034 · doi:10.1007/s11012-015-0225-x
[29] Singh, J., Transmission of coupled longitudinal waves through a generalized thermoelastic solid interface, Meccanica, 50, 133-141 (2015) · Zbl 1329.74125 · doi:10.1007/s11012-014-0060-5
[30] Matysiak, SJ; Perkowski, DM; Kulchytsky-Zhyhailo, R., On temperature and stresses in a thermoelastic half-space with temperature dependent properties, Meccanica, 52, 2789-2799 (2017) · Zbl 1457.74047 · doi:10.1007/s11012-016-0610-0
[31] Ezzat, MA; Zakaria, M.; Abdel-bary, AA, Generalized thermoelasticity with temperatture dependent modulus of elasticity under three theories, J. Appl. Math. Comput., 14, 1-2, 193-212 (2004) · Zbl 1088.74020 · doi:10.1007/BF02936108
[32] Ezzat, MA; Othman, MIA; El Karamany, AS, The dependence of the modulus of elasticity on the reference temperature in generalized thermo-elasticity, J. Therm. Stress., 24, 12, 1159-1176 (2001) · doi:10.1080/014957301753251737
[33] Othman, MIA; Elmaklizi, YD; Said, SM, Generalized thermoelastic medium with temperature dependent properties for different theories under the effect of gravity field, Int. J. Thermophys., 34, 3, 521-537 (2013) · doi:10.1007/s10765-013-1425-z
[34] Kaur, I.; Lata, P.; Singh, K., Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature, Part. Differ. Eqs. Appl. Math., 4 (2021) · doi:10.1016/j.padiff.2021.100049
[35] Kaur, I.; Lata, P.; Singh, K., Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature, Waves Rand. Complex Med. (2020) · Zbl 1502.74059 · doi:10.1080/17455030.2020.1856451
[36] Lata, P.; Singh, K., Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current, Waves Rand. Complex Med. (2020) · Zbl 1498.74035 · doi:10.1080/17455030.2020.1838667
[37] Lata, P.; Kaur, I.; Singh, K., Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature, Coupl. Syst. Mech., 9, 5, 411-432 (2020) · doi:10.12989/csm.2020.9.5.411
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.