×

Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results. (English) Zbl 1481.35006

Summary: Interpolation inequalities play an essential role in analysis with fundamental consequences in mathematical physics, nonlinear partial differential equations (PDEs), Markov processes, etc., and have a wide range of applications in various other areas of Science. Research interests have evolved over the years: while mathematicians were originally focussed on abstract properties (for instance appropriate notions of functional spaces for the existence of weak solutions in PDEs), more qualitative questions (for instance, bifurcation diagrams, multiplicity of the solutions in PDEs and their qualitative behaviour) progressively emerged. The use of entropy methods in nonlinear PDEs is a typical example: in some cases, the optimal constant in the inequality can be interpreted as an optimal rate of decay of an entropy for an associated evolution equation. Much more has been learned by adopting this point of view. This paper aims at illustrating some of these recent aspect of entropy-entropy production inequalities, with applications to stability in Gagliardo-Nirenberg-Sobolev inequalities and symmetry results in Caffarelli-Kohn-Nirenberg inequalities. Entropy methods provide a framework which relates nonlinear regimes with their linearized counterparts. This framework allows to prove optimality results, symmetry results and stability estimates. Some emphasis will be put on the hidden structure which explain such properties. Related open problems will be listed.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26D10 Inequalities involving derivatives and differential and integral operators
35B06 Symmetries, invariants, etc. in context of PDEs
35J60 Nonlinear elliptic equations
35K55 Nonlinear parabolic equations
46B70 Interpolation between normed linear spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
49J40 Variational inequalities
49K20 Optimality conditions for problems involving partial differential equations
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Addala, L.; Dolbeault, J.; Li, X.; Tayeb, ML, \({\rm L}^2\)-hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system, J. Stat. Phys., 184, 4 (2021) · Zbl 1486.82034 · doi:10.1007/s10955-021-02784-4
[2] Armstrong, S., Mourrat, J.-C.: Variational methods for the kinetic Fokker-Planck equation (2019). arXiv:1902.04037
[3] Arnold, A.; Bartier, J-P; Dolbeault, J., Interpolation between logarithmic Sobolev and Poincaré inequalities, Commun. Math. Sci., 5, 971-979 (2007) · Zbl 1146.60063
[4] Arnold, A., Dolbeault, J., Schmeiser, C., Wöhrer, T.: Sharpening of decay rates in Fourier based hypocoercivity methods. In: Salvarani, F. (ed.) Recent Advances in Kinetic Equations and Applications. Springer INdAM Series (2021). arXiv:2012.09103
[5] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Differ. Equ., 26, 43-100 (2001) · Zbl 0982.35113
[6] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11, 573-598 (1976) · Zbl 0371.46011
[7] Bakry, D., Émery, M.: Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci. Paris Sér. I Math. 299, 775-778 (1984) · Zbl 0563.60068
[8] Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, pp. 177-206. Springer, Berlin (1985) · Zbl 0561.60080
[9] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2014), Cham: Springer, Cham · Zbl 1376.60002
[10] Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85, 253-270 (1996) · Zbl 0870.60071
[11] Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 2, 138, 213-242 (1993) · Zbl 0826.58042
[12] Bentaleb, A.: Inégalité de Sobolev pour l’opérateur ultrasphérique. C. R. Acad. Sci. Paris Sér. I Math 317, 187-190 (1993) · Zbl 0780.60064
[13] Bianchi, G.; Egnell, H., A note on the Sobolev inequality, J. Funct. Anal., 100, 18-24 (1991) · Zbl 0755.46014
[14] Bidaut-Véron, M-F; Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106, 489-539 (1991) · Zbl 0755.35036
[15] Blanchet, A.; Bonforte, M.; Dolbeault, J.; Grillo, G.; Vázquez, JL, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191, 347-385 (2009) · Zbl 1178.35214
[16] Bliss, GA, An integral inequality, J. Lond. Math. Soc., 1, 40-46 (1930) · JFM 56.0434.02
[17] Bonforte, M.; Dolbeault, J.; Grillo, G.; Vázquez, JL, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107, 16459-16464 (2010) · Zbl 1256.35026
[18] Bonforte, M.; Dolbeault, J.; Muratori, M.; Nazaret, B., Weighted fast diffusion equations (part I): sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities, Kinet. Relat. Models, 10, 33-59 (2017) · Zbl 1361.35075
[19] Bonforte, M.; Dolbeault, J.; Muratori, M.; Nazaret, B., Weighted fast diffusion equations (part II): sharp asymptotic rates of convergence in relative error by entropy methods, Kinet. Relat. Models, 10, 61-91 (2017) · Zbl 1361.35076
[20] Bonforte, M., Dolbeault, J., Nazaret, B., Simonov, N.: Stability in Gagliardo-Nirenberg-Sobolev inequalities. arXiv:2007.03674
[21] Bonforte, M.; Simonov, N., Quantitative a priori estimates for fast diffusion equations with Caffarelli-Kohn-Nirenberg weights. Harnack inequalities and Hölder continuity, Adv. Math., 345, 1075-1161 (2019) · Zbl 1408.35073
[22] Bonforte, M.; Vázquez, JL, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240, 399-428 (2006) · Zbl 1107.35063
[23] Bonheure, D.; Dolbeault, J.; Esteban, MJ; Laptev, A.; Loss, M., Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields, Commun. Math. Phys., 375, 2071-2087 (2019) · Zbl 1439.81049
[24] Bonheure, D.; Dolbeault, J.; Esteban, MJ; Laptev, A.; Loss, M., Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3, Rev. Math. Phys., 33, 2150006, 1-29 (2021) · Zbl 1499.81058
[25] Bouin, E.; Dolbeault, J.; Lafleche, L.; Schmeiser, C., Hypocoercivity and sub-exponential local equilibria, Monatshefte für Mathematik, 194, 41-65 (2020) · Zbl 1456.82811
[26] Bouin, E.; Dolbeault, J.; Mischler, S.; Mouhot, C.; Schmeiser, C., Hypocoercivity without confinement, Pure Appl. Anal., 2, 203-232 (2020) · Zbl 1448.82035
[27] Bouin, E.; Dolbeault, J.; Schmeiser, C., Diffusion and kinetic transport with very weak confinement, Kinet. Relat. Models, 13, 345-371 (2020) · Zbl 1434.35237
[28] Bouin, E., Dolbeault, J., Schmeiser, C.: A variational proof of Nash’s inequality. Rendiconti Lincei Matematica e Applicazioni 31, 211-223 (2020) · Zbl 1440.35070
[29] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[30] Brezis, H.; Lieb, EH, Sobolev inequalities with remainder terms, J. Funct. Anal., 62, 73-86 (1985) · Zbl 0577.46031
[31] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[32] Brigati, G.: Time averages for kinetic Fokker-Planck equations (2021). arXiv:2106.12801
[33] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259-275 (1984) · Zbl 0563.46024
[34] Catrina, F.; Wang, Z-Q, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Commun. Pure Appl. Math., 54, 229-258 (2001) · Zbl 1072.35506
[35] Chafaï, D., Entropies, convexity, and functional inequalities: on \(\Phi \)-entropies and \(\Phi \)-Sobolev inequalities, J. Math. Kyoto Univ., 44, 325-363 (2004) · Zbl 1079.26009
[36] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1957), New York: Dover Publications Inc, New York · Zbl 0079.23901
[37] Chou, KS; Chu, CW, On the best constant for a weighted Sobolev-Hardy inequality, J. Lond. Math. Soc., 2, 48, 137-151 (1993) · Zbl 0739.26013
[38] Cianchi, A.; Fusco, N.; Maggi, F.; Pratelli, A., The sharp Sobolev inequality in quantitative form, J. Eur. Math. Soc., 11, 1105-1139 (2009) · Zbl 1185.46025
[39] Coffman, CV, Uniqueness of the ground state solution for \(\Delta u-u+u^3=0\) and a variational characterization of other solutions, Arch. Ration. Mech. Anal., 46, 81-95 (1972) · Zbl 0249.35029
[40] Cordero-Erausquin, D.; Nazaret, B.; Villani, C., A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182, 307-332 (2004) · Zbl 1048.26010
[41] Del Pino, M.; Dolbeault, J., Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, Journal de Mathématiques Pures et Appliquées Neuvième Série, 81, 847-875 (2002) · Zbl 1112.35310
[42] Del Pino, M.; Dolbeault, J., The Euclidean Onofri inequality in higher dimensions, Int. Math. Res. Not., 2012, 3600-3611 (2013) · Zbl 1316.26025
[43] Demange, J., Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254, 593-611 (2008) · Zbl 1133.58012
[44] Deny, J., Lions, J.-L.: Les espaces du type de Beppo Levi. Annales de l’Institut Fourier 5, 305-370 (1954) · Zbl 0065.09903
[45] Dolbeault, J., Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion, Math. Res. Lett., 18, 1037-1050 (2011) · Zbl 1272.26010
[46] Dolbeault, J.; Esteban, MJ, A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities, J. Numer. Math., 20, 233-249 (2013) · Zbl 1267.65075
[47] Dolbeault, J.; Esteban, MJ, Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, 27, 435 (2014) · Zbl 1292.35033
[48] Dolbeault, J.; Esteban, MJ, Improved interpolation inequalities and stability, Adv. Nonlinear Stud., 20, 277-291 (2020) · Zbl 1437.26018
[49] Dolbeault, J.; Esteban, MJ; Kowalczyk, M.; Loss, M., Improved interpolation inequalities on the sphere, Discrete Contin. Dyn. Syst. Ser. S (DCDS-S), 7, 695-724 (2014) · Zbl 1290.26022
[50] Dolbeault, J.; Esteban, MJ; Loss, M., Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal., 267, 1338-1363 (2014) · Zbl 1294.58005
[51] Dolbeault, J.; Esteban, MJ; Loss, M., Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization, J. Elliptic Parabol. Equ., 2, 267-295 (2016) · Zbl 1386.35174
[52] Dolbeault, J.; Esteban, MJ; Loss, M., Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, Invent. Math., 206, 397-440 (2016) · Zbl 1379.49021
[53] Dolbeault, J., Esteban, M.J., Loss, M.: Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d’interpolation sur la sphère: flots non-linéaires vs. flots linéaires). Annales de la faculté des sciences de Toulouse Sér. 6 26, 351-379 (2017) · Zbl 1372.58017
[54] Dolbeault, J., Esteban, M.J., Loss, M.: Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. In: Proc. Int. Cong. of Math. 2018, Rio de Janeiro, vol. 3, pp. 2279-2304 (2018) · Zbl 1453.35066
[55] Dolbeault, J.; Esteban, MJ; Loss, M.; Muratori, M., Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities, Comptes Rendus Mathématique, 355, 133-154 (2017) · Zbl 1379.49009
[56] Dolbeault, J.; Jankowiak, G., Sobolev and Hardy-Littlewood-Sobolev inequalities, J. Differ. Equ., 257, 1689-1720 (2014) · Zbl 1303.26017
[57] Dolbeault, J.; Li, X., \( \Phi \)-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations, Math. Models Methods Appl. Sci., 28, 2637-2666 (2018) · Zbl 1411.82032
[58] Dolbeault, J.; Mouhot, C.; Schmeiser, C., Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., 367, 3807-3828 (2015) · Zbl 1342.82115
[59] Dolbeault, J.; Nazaret, B.; Savaré, G., On the Bakry-Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., 6, 477-494 (2008) · Zbl 1149.35330
[60] Felli, V.; Schneider, M., Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type, J. Differ. Equ., 191, 121-142 (2003) · Zbl 1088.35023
[61] Figalli, A.; Neumayer, R., Gradient stability for the Sobolev inequality: the case \(p\ge 2\), J. Eur. Math. Soc., 21, 319-354 (2018) · Zbl 1417.46023
[62] Figalli, A., Zhang, Y.R.-Y.: Sharp gradient stability for the Sobolev inequality (2020). arXiv:2003.04037
[63] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[64] Gagliardo, E., Proprietà di alcune classi di funzioni in più variabili, Ricerche mat., 7, 102-137 (1958) · Zbl 0089.09401
[65] Gidas, B.; Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34, 525-598 (1981) · Zbl 0465.35003
[66] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition) · Zbl 1042.35002
[67] Gunson, J.: Inequalities in mathematical physics. In: Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math, vol. 129, pp. 53-79. Dekker, New York (1991) · Zbl 0771.35035
[68] Horiuchi, T., Best constant in weighted Sobolev inequality with weights being powers of distance from the origin, J. Inequal. Appl., 1, 275-292 (1997) · Zbl 0899.35034
[69] Il’in, V.P.: Some integral inequalities and their applications in the theory of differentiable functions of several variables. Mat. Sb. (N.S.) 54(96), 331-380 (1961) · Zbl 0103.08303
[70] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17 (1998) · Zbl 0915.35120
[71] Jüngel, A., Entropy Methods for Diffusive Partial Differential Equations, SpringerBriefs in Mathematics (2016), Cham: Springer, Cham · Zbl 1361.35002
[72] Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985) · Zbl 0593.35002
[73] Kesavan, S.: Symmetrization & Applications, Series in Analysis, vol. 3. World Scientific Publishing Co., Pte. Ltd., Hackensack (2006) · Zbl 1110.35002
[74] Lane, HJ, On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment, Am. J. Sci., s2-50, 57-74 (1870)
[75] Latała, R., Oleszkiewicz, K.: Between Sobolev and Poincaré. In: Geometric Aspects of Functional Analysis, Lecture Notes in Math, vol. 1745, pp. 147-168. Springer, Berlin (2000) · Zbl 0986.60017
[76] Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93-105 (1976/77) · Zbl 0369.35022
[77] Lieb, EH, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math, 2, 118, 349-374 (1983) · Zbl 0527.42011
[78] Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001) · Zbl 0966.26002
[79] Moser, J., A Harnack inequality for parabolic differential equations, Commun. Pure Appl. Math., 17, 101-134 (1964) · Zbl 0149.06902
[80] Moser, J., On a pointwise estimate for parabolic differential equations, Commun. Pure Appl. Math., 24, 727-740 (1971) · Zbl 0227.35016
[81] Nash, J., Continuity of solutions of parabolic and elliptic equations, Am. J. Math., 80, 931-954 (1958) · Zbl 0096.06902
[82] Neumayer, R., A note on strong-form stability for the Sobolev inequality, Calc. Var. Partial Differ. Equ., 59, 8 (2020) · Zbl 1440.46033
[83] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3, 13, 115-162 (1959) · Zbl 0088.07601
[84] Nirenberg, L., Foreword: issue dedicated to professor Emilio Gagliardo, Rendiconti Lincei Matematica e Applicazioni, 31, 1 (2020)
[85] Otto, F., The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., 26, 101-174 (2001) · Zbl 0984.35089
[86] Rodemich, E.: The Sobolev inequalities with best possible constants. In: Analysis seminar at California Institute of technology (1966)
[87] Rosen, G., Minimum value for \(c\) in the Sobolev inequality \(\Vert \phi^3\Vert \le c\,\Vert \nabla \phi \Vert^3\), SIAM J. Appl. Math., 21, 30-32 (1971) · Zbl 0201.38704
[88] Savaré, G.; Toscani, G., The concavity of Rényi entropy power, IEEE Trans. Inf. Theory, 60, 2687-2693 (2014) · Zbl 1360.94169
[89] Smets, D.; Willem, M., Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differ. Equ., 18, 57-75 (2003) · Zbl 1274.35026
[90] Sobolev, S.: Sur un théorème d’analyse fonctionnelle. Matematicheskii Sbornik 46, 471-497 (1938) · JFM 64.1100.02
[91] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 4, 110, 353-372 (1976) · Zbl 0353.46018
[92] Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 3, 697-718 (1976) · Zbl 0341.35031
[93] Talenti, G.: Inequalities in rearrangement invariant function spaces. In: Nonlinear Analysis, Function Spaces and Applications, vol. 5 (Prague, 1994), pp. 177-230. Prometheus, Prague (1994) · Zbl 0872.46020
[94] Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, iv+141 (2009) · Zbl 1197.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.