×

Cross-estimation for decision selection. (English) Zbl 07886550


MSC:

62-XX Statistics
Full Text: DOI

References:

[1] ShakibayifarM, HassannayebiE, JafaryH, SajedinejadA. Stochastic optimization of an urban rail timetable under time‐dependent and uncertain demand. Appl Stoch Model Bus Ind. 2017;33(6):640‐661.
[2] AmendolaA, GiordanoF, ParrellaML, RestainoM. Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction. Appl Stoch Model Bus Ind. 2017;33(4):355‐368. · Zbl 1411.62291
[3] GotohJ‐Y, KimMJ, LimAEB. Robust empirical optimization is almost the same as mean-variance optimization. Oper Res Lett. 2018;46(4):448‐452. · Zbl 1525.90300
[4] MallowsCL. Some comments on C_p. Technometrics. 1973;15(4):661‐675. · Zbl 0269.62061
[5] AkaikeH. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika. 1973;60(2):255‐265. · Zbl 0318.62075
[6] SchwarzG. Estimating the dimension of a model. Ann Stat. 1978;6(2):461‐464. · Zbl 0379.62005
[7] StoneM. Cross‐validatory choice and assessment of statistical predictions. J Royal Stat Soc Ser B (Methodol). 1974;36(2):111‐133. · Zbl 0308.62063
[8] GeisserS. The predictive sample reuse method with applications. J Am Stat Assoc. 1975;70(350):320‐328. · Zbl 0321.62077
[9] EfronB. Estimating the error rate of a prediction rule: improvement on cross‐validation. J Am Stat Assoc. 1983;78(382):316‐331. · Zbl 0543.62079
[10] BertsimasD, KallusN. From predictive to prescriptive analytics. Manag Sci. 2019;66(3):1025‐1044.
[11] BesbesO, ZeeviA. On the (surprising) sufficiency of linear models for dynamic pricing with demand learning. Manag Sci. 2015;61(4):723‐739.
[12] CooperWL, MelloT, KleywegtAJ. Learning and pricing with models that do not explicitly incorporate competition. Oper Res. 2015;63(1):86‐103. · Zbl 1377.91094
[13] den BoerArnoud, SieragDirk D. Decision‐based model selection. manuscript; 2018. https://www.researchgate.net/profile/Arnoud_V_Den_Boer/publication/282075352_Decision‐based_model_selection/links/5b8ce848299bf1d5a73a11bc/Decision‐based‐model‐selection.pdf.
[14] BesbesO, PhillipsR, ZeeviA. Testing the validity of a demand model: an operations perspective. Manufact Serv Operat Manag. 2010;12(1):162‐183.
[15] WagerS, DuW, TaylorJ, TibshiraniRJ. High‐dimensional regression adjustments in randomized experiments. Proc Nat Acad Sci. 2016;113(45):12673‐12678. · Zbl 1407.62264
[16] LiyanageLH, ShanthikumarJG. A practical inventory control policy using operational statistics. Oper Res Lett. 2005;33(4):341‐348. · Zbl 1090.90003
[17] LimAEB, ShanthikumarJG, ShenZJM. Tutorials in Operations Research: Model uncertainty, robust optimization, and learning. Paper proceeding at: conference paper of INFORMS Annual 2016; 2006; 66‐94.
[18] DengY, LiuJ, SenS. Coalescing data and decision sciences for analytics. INFORMS Tutor Operat Res. 2018;20‐49.
[19] SwaminathanA, JoachimsT. Counterfactual risk minimization: learning from logged bandit feedback. Paper presented at: Proceedings of the International Conference on Machine Learning; 2015:814‐823.
[20] AronowPM, MiddletonJA. A class of unbiased estimators of the average treatment effect in randomized experiments. J Causal Infer. 2013;1(1):135‐154.
[21] WagerS, DuW, TaylorJ, TibshiraniRJ. High‐dimensional regression adjustments in randomized experiments. Proc Natl Acad Sci. 2016;113(45):12673‐12678. · Zbl 1407.62264
[22] DudíkM, LangfordJ, LiL. Doubly robust policy evaluation and learning. Paper presented at: Proceedings of the 28th International Conference on International Conference on Machine Learning; 2011:1097‐1104.
[23] AtheySusan, WagerStefan. Efficient policy learning. arXiv:1702.02896v4. Manuscript; 2018.
[24] ClevelandWS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74(368):829‐836. · Zbl 0423.62029
[25] ChatfieldC. Model uncertainty, data mining and statistical inference. J R Stat Soc A Stat Soc. 1995;158(3):419‐444.
[26] DraperD. Assessment and propagation of model uncertainty. J Royal Stat Soc Ser B (Methodol). 1995;57(1):45‐70. · Zbl 0812.62001
[27] HoetingJA, MadiganD, RafteryAE, VolinskyCT. Bayesian model averaging: a tutorial. Stat Sci. 1999;14(4):382‐401.
[28] YangY. Adaptive regression by mixing. J Am Stat Assoc. 2001;96(454):574‐588. · Zbl 1018.62033
[29] YuanZ, YangY. Combining linear regression models: when and how?J Am Stat Assoc. 2005;100(472):1202‐1214. · Zbl 1117.62454
[30] BreimanL. Bagging predictors. Mach Learn. 1996;24(2):123‐140. · Zbl 0858.68080
[31] DudoitS, vanderLaanMJ. Asymptotics of cross‐validated risk estimation in estimator selection and performance assessment. Statistical Methodology. 2005;2(2):131‐154. · Zbl 1248.62004
[32] ScarfH. A min max solution of an inventory problem. Stud Math Theory Invent Product. Stanford, CA: Stanford University Press; 1958:201‐209.
[33] RahimianH, MehrotraS. Distributionally robust optimization: a review; 2019. arXiv:1908.05659.
[34] DelageE, YeY. Distributionally robust optimization under moment uncertainty with application to data‐driven problems. Oper Res. 2010;58(3):595‐612. · Zbl 1228.90064
[35] WangZ, GlynnPW, YeY. Likelihood robust optimization for data‐driven problems. Comput Manag Sci. 2016;13(2):241‐261. · Zbl 1397.90225
[36] GallegoG, RatliffR, ShebalovS. A general attraction model and sales‐based linear program for network revenue management under customer choice. Oper Res. 2014;63(1):212‐232. · Zbl 1422.91446
[37] HárdleW. Applied Nonparametric Regression. Cambridge, MA: Cambridge University Press; 1990. · Zbl 0714.62030
[38] FriedmanJH, HastieT. Tibshirani rob regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1‐22.
[39] Columbia University Center for Pricing and Revenue Management. Dataset CPRM‐12‐001: On‐line auto lending; 2012.
[40] BottouL, PetersJ, Quiñonero‐CandelaJ, et al. Counterfactual reasoning and learning systems: the example of computational advertising. J Mach Learn Res. 2013;14(1):3207‐3260. · Zbl 1318.62206
[41] KallusN. balanced policy evaluation and learning. Adv Neural Inf Process Syst. 2018;31:8895‐8906.
[42] KitagawaT, TetenovA. Who should be treated? empirical welfare maximization methods for treatment choice. Econometrica. 2018;86(2):591‐616. · Zbl 1419.91280
[43] vanderVaartAW, WellnerJA. Weak Convergence and Empirical Processes. Vol 1996. New York, NY: Springer; 1996. · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.