×

On periodic boundary conditions and ergodicity in computational homogenization of heterogeneous materials with random microstructure. (English) Zbl 1442.74191

Summary: Due to high computational costs associated with stochastic computational homogenization, a highly complex random material microstructure is often replaced by simplified, parametric, ergodic, and sometimes periodic models. This replacement is often criticized in the literature due to unclear error resulting from the periodicity and ergodicity assumptions. In the current contribution, we perform a validation of both assumptions through various numerical examples. To this end, we compare large-scale non-simplified and non-ergodic models with simplified, ergodic, and periodic solutions. In addition, we analyze the Hill-Mandel condition for stochastic homogenization problems and demonstrate that for a stochastic problem there are more than three classical types of boundary conditions. As an example, we propose two novel stochastic periodic boundary conditions which possess a clear physical meaning. The effect of these novel periodic boundary conditions is also analyzed by comparing with non-ergodic simulation results.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs
74A40 Random materials and composite materials
Full Text: DOI

References:

[1] Alsayednoor, J.; Harrison, P.; Guo, Z., Large strain compressive response of 2-d periodic representative volume element for random foam microstructures, Mech. Mater., 66, 0, 7-20 (2013), URL http://www.sciencedirect.com/science/article/pii/S016766361300118X
[2] Savvas, D.; Stefanou, G.; Papadrakakis, M., Determination of rve size for random composites with local volume fraction variation, Comput. Methods Appl. Mech. Engrg., 305, 340-358 (2016), URL http://www.sciencedirect.com/science/article/pii/S0045782516300822 · Zbl 1425.74039
[3] Saeb, S.; Steinmann, P.; Javili, A., Bounds on size-dependent behaviour of composites, Phil. Mag., 98, 6, 437-463 (2018), URL https://doi.org/10.1080/14786435.2017.1408967
[4] Zabihyan, R.; Mergheim, J.; Javili, A.; Steinmann, P., Aspects of computational homogenization in magneto-mechanics: Boundary conditions, rve size and microstructure composition, Int. J. Solids Struct., 130-131, 105-121 (2018), URL http://www.sciencedirect.com/science/article/pii/S0020768317304705
[5] Cottereau, R.; Clouteau, D.; Ben Dhia, H., Localized modeling of uncertainty in the arlequin framework, (Belyaev, A. K.; Langley, R. S., IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties. IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, IUTAM Bookseries, vol. 27 (2011), Springer Netherlands), 457-468
[6] Cottereau, R., A stochastic-deterministic coupling method for multiscale problems. application to numerical homogenization of random materials, Procedia IUTAM, 6, 0, 35-43 (2013), IUTAM Symposium on Multiscale Problems in Stochastic Mechanics, URL http://www.sciencedirect.com/science/article/pii/S2210983813000059
[7] Kucerova, A.; Sykora, J.; Rosic, B.; Matthies, H. G., Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials, J. Comput. Appl. Math., 236, 18, 4862-4872 (2012), FEMTEC 2011: 3rd International Conference on Computational Methods in Engineering and Science, May 9-13, 2011, URL http://www.sciencedirect.com/science/article/pii/S037704271200060X · Zbl 1426.76633
[8] Lucas, V.; Golinval, J.-C.; Paquay, S.; Nguyen, V.-D.; Noels, L.; Wu, L., A stochastic computational multiscale approach; application to mems resonators, Comput. Methods Appl. Mech. Engrg., 294, 141-167 (2015), URL http://www.sciencedirect.com/science/article/pii/S0045782515001929 · Zbl 1423.74198
[9] Nouy, A.; Clement, A., Extended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces, Internat. J. Numer. Methods Engrg., 83, 10, 1312-1344 (2010), URL http://dx.doi.org/10.1002/nme.2865 · Zbl 1202.74182
[10] Savvas, D.; Stefanou, G.; Papadrakakis, M.; Deodatis, G., Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by xfem, Comput. Mech., 54, 5, 1221-1235 (2014), URL http://dx.doi.org/10.1007/s00466-014-1053-x · Zbl 1311.74008
[11] Stefanou, G.; Nouy, A.; Clement, A., Identification of random shapes from images through polynomial chaos expansion of random level set functions, Internat. J. Numer. Methods Engrg., 79, 2, 127-155 (2009), URL http://dx.doi.org/10.1002/nme.2546 · Zbl 1171.74449
[12] Stefanou, G., Simulation of heterogeneous two-phase media using random fields and level sets, Front. Struct. Civ. Eng., 9, 2, 114-120 (2014), URL http://dx.doi.org/10.1007/s11709-014-0267-5
[13] Xu, X. F., A multiscale stochastic finite element method on elliptic problems involving uncertainties, Comput. Methods Appl. Mech. Engrg., 196, 2723-2736 (2007), URL http://www.sciencedirect.com/science/article/pii/S0045782507000473 · Zbl 1173.74449
[14] Pivovarov, D.; Steinmann, P., Modified sfem for computational homogenization of heterogeneous materials with microstructural geometric uncertainties, Comput. Mech., 57, 1, 123-147 (2016), URL http://dx.doi.org/10.1007/s00466-015-1224-4 · Zbl 1381.74179
[15] Pivovarov, D.; Steinmann, P., On stochastic fem based computational homogenization of magneto-active heterogeneous materials with random microstructure, Comput. Mech., 58, 6, 981-1002 (2016), URL http://dx.doi.org/10.1007/s00466-016-1329-4 · Zbl 1398.74392
[16] Pivovarov, D.; Steinmann, P.; Willner, K., Two reduction methods for stochastic fem based homogenization using global basis functions, Comput. Methods Appl. Mech. Engrg., 332, 488-519 (2018), URL https://www.sciencedirect.com/science/article/pii/S0045782518300045 · Zbl 1440.74436
[17] Pivovarov, D.; Oberleiter, T.; Willner, K.; Steinmann, P., Fuzzy-stochastic fem-based homogenization framework for materials with polymorphic uncertainties in the microstructure, Internat. J. Numer. Methods Engrg., 0, 0, 1-28 (2018), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5947
[18] Castaneda, P. P.; Galipeau, E., Homogenization-based constitutive models for magnetorheological elastomers at finite strain, J. Mech. Phys. Solids, 59, 2, 194-215 (2011), URL http://www.sciencedirect.com/science/article/pii/S0022509610002383 · Zbl 1270.74075
[19] Khisaeva, Z. F.; Ostoja-Starzewski, M., On the size of rve in finite elasticity of random composites, J. Elasticity, 85, 2, 153 (2006), URL https://doi.org/10.1007/s10659-006-9076-y · Zbl 1104.74008
[20] Ostoja-Starzewski, M., Material spatial randomness: From statistical to representative volume element, Probab. Eng. Mech., 21, 2, 112-132 (2006), URL http://www.sciencedirect.com/science/article/pii/S0266892005000433
[21] Trovalusci, P.; Ostoja-Starzewski, M.; Bellis, M. L.D.; Murrali, A., Scale-dependent homogenization of random composites as micropolar continua, Eur. J. Mech. A Solids, 49, 396-407 (2015), URL http://www.sciencedirect.com/science/article/pii/S0997753814001223
[22] Kaminski, M., Homogenization of fiber-reinforced composites with random properties using the least-squares response function approach, Int. J. Multiscale Comput. Eng., 9, 3, 257-270 (2011) · Zbl 1448.74089
[23] Kaminski, M., The Stochastic Perturbation Method for Computational Mechanics (2013), A John Wiley & Sons, Ltd. · Zbl 1275.74002
[24] Kaminski, M., Homogenization with uncertainty in poisson ratio for polymers with rubber particles, Composites B, 69, Supplement C, 267-277 (2015), URL http://www.sciencedirect.com/science/article/pii/S1359836814004624
[25] Kaminski, M.; Sokolowski, D., Dual probabilistic homogenization of the rubber-based composite with random carbon black particle reinforcement, Compos. Struct., 140, Supplement C, 783-797 (2016), URL http://www.sciencedirect.com/science/article/pii/S0263822316000519
[26] Sokołowski, D.; Kamiński, M., Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects, Acta Mech., 229, 9, 3727-3765 (2018), URL https://doi.org/10.1007/s00707-018-2174-7
[27] Wu, L.; Nguyen, V.-D.; Adam, L.; Noels, L., An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites, Comput. Methods Appl. Mech. Engrg., 348, 97-138 (2019), URL http://www.sciencedirect.com/science/article/pii/S0045782519300210 · Zbl 1440.74341
[28] Tootkaboni, M.; Graham-Brady, L., A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties, Internat. J. Numer. Methods Engrg., 83, 1, 59-90 (2010), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2829 · Zbl 1193.74166
[29] Scheunemann, L.; Schroeder, J.; Balzani, D.; Brands, D., Construction of statistically similar representative volume elements — comparative study regarding different statistical descriptors, Procedia Eng., 81, 1360-1365 (2014), 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, Japan, URL http://www.sciencedirect.com/science/article/pii/S1877705814014362
[30] Javili, A.; Chatzigeorgiou, G.; Steinmann, P., Computational homogenization in magneto-mechanics, Int. J. Solids Struct., 50, 25-26, 4197-4216 (2013), URL http://www.sciencedirect.com/science/article/pii/S0020768313003405
[31] Sandstoem, C.; Larsson, F.; Runesson, K., Weakly periodic boundary conditions for the homogenization of flow in porous media, Adv. Model. Simul. Eng. Sci., 1, 1, 12 (2014), URL https://doi.org/10.1186/s40323-014-0012-6
[32] Saeb, S.; Steinmann, P.; Javili, A., Aspects of computational homogenization at finite deformations: A unifying review from reuss’ to voigt’s bound, ASME Appl. Mech. Rev., 68, 5, 050801-050801-33 (2016)
[33] Yue, X.; E., W., The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size, J. Comput. Phys., 222, 2, 556-572 (2007), URL http://www.sciencedirect.com/science/article/pii/S0021999106003676 · Zbl 1158.74541
[34] Firooz, S.; Saeb, S.; Chatzigeorgiou, G.; Meraghni, F.; Steinmann, P.; Javili, A., Systematic study of homogenization and the utility of circular simplified representative volume element, Math. Mech. Solids, 0, 0, 1-25 (2019), URL https://doi.org/10.1177/1081286518823834 · Zbl 07273348
[35] Ma, J.; Zhang, J.; Li, L.; Wriggers, P.; Sahraee, S., Random homogenization analysis for heterogeneous materials with full randomness and correlation in microstructure based on finite element method and monte-carlo method, Comput. Mech., 54, 6, 1395-1414 (2014), URL http://dx.doi.org/10.1007/s00466-014-1065-6 · Zbl 1309.74063
[36] Ma, J.; Sahraee, S.; Wriggers, P.; De Lorenzis, L., Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure, Comput. Mech., 55, 5, 819-835 (2015), URL http://dx.doi.org/10.1007/s00466-015-1136-3 · Zbl 1329.74243
[37] Bris, C. L.; Legoll, F., Examples of computational approaches for elliptic, possibly multiscale pdes with random inputs, J. Comput. Phys., 328, Supplement C, 455-473 (2017), URL http://www.sciencedirect.com/science/article/pii/S0021999116305253 · Zbl 1406.35496
[38] Galipeau, E.; Rudykh, S.; deBotton, G.; Castaneda, P. P., Magnetoactive elastomers with periodic and random microstructures, Int. J. Solids Struct., 51, 18, 3012-3024 (2014), URL http://www.sciencedirect.com/science/article/pii/S0020768314001681
[39] Liu, G.; Zeng, W.; Nguyen-Xuan, H., Generalized stochastic cell-based smoothed finite element method (gs-cs-fem) for solid mechanics, Finite Elem. Anal. Des., 63, Supplement C, 51-61 (2013), URL http://www.sciencedirect.com/science/article/pii/S0168874X12001631 · Zbl 1282.74090
[40] Sakata, S.; Ashida, F.; Kojima, T., Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method, Int. J. Solids Struct., 45, 25-26, 6553-6565 (2008), URL http://www.sciencedirect.com/science/article/pii/S0020768308003363 · Zbl 1168.74423
[41] Bansal, M.; Singh, I.; Mishra, B.; Sharma, K.; Khan, I., A stochastic xfem model for the tensile strength prediction of heterogeneous graphite based on microstructural observations, J. Nuclear Mater., 487, Supplement C, 143-157 (2017), URL http://www.sciencedirect.com/science/article/pii/S0022311516306973
[42] Nouy, A.; Clement, A.; Schoefs, F.; Moes, N., An extended stochastic finite element method for solving stochastic partial differential equations on random domains, Comput. Methods Appl. Mech. Engrg., 197, 51-52, 4663-4682 (2008), URL http://www.sciencedirect.com/science/article/pii/S0045782508002405 · Zbl 1194.74457
[43] Babuska, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007), URL http://dx.doi.org/10.1137/050645142 · Zbl 1151.65008
[44] Eldred, M. S.; Burkardt, J., Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, (47th AIAA Aerospace Sciences Meeting (2009), American Institute of Aeronautics and Astronautics), 1-20
[45] Ma, X.; Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 8, 3084-3113 (2009), URL https://www.sciencedirect.com/science/article/pii/S002199910900028X · Zbl 1161.65006
[46] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2003), Dover Publications, inc: Dover Publications, inc New York
[47] Babuska, I.; Tempone, R.; Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 2, 800-825 (2004), URL http://dx.doi.org/10.1137/S0036142902418680 · Zbl 1080.65003
[48] Nouy, A., Recent developments in spectral stochastic methods forthenumerical solution of stochastic partial differential equations, Arch. Comput. Methods Eng., 16, 3, 251-285 (2009), URL https://doi.org/10.1007/s11831-009-9034-5 · Zbl 1360.65036
[49] Papoulis, A.; Pillai, S. U., Probability, Random Variables and Stochastic Processes (2001), McGraw-Hill Education
[50] Shynk, J. J., Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications (2012), Wiley-Interscience · Zbl 1275.60002
[51] Deb, M. K.; Babuska, I. M.; Oden, J., Solution of stochastic partial differential equations using galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190, 48, 6359-6372 (2001), URL http://www.sciencedirect.com/science/article/pii/S0045782501002377 · Zbl 1075.65006
[52] Rosic, B.; Matthies, H., Computational approaches to inelastic media with uncertain parameters, J. Serb. Soc. Comput. Mech., 2, 1, 28-43 (2008)
[53] Ghosh, S.; Lee, K.; Moorthy, S., Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method, Int. J. Solids Struct., 32, 1, 27-62 (1995), URL http://www.sciencedirect.com/science/article/pii/002076839400097G · Zbl 0865.73060
[54] Galipeau, E.; Castaneda, P. P., The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites, Int. J. Solids Struct., 49, 1, 1-17 (2012), URL http://www.sciencedirect.com/science/article/pii/S0020768311003076
[55] Galipeau, E.; Castaneda, P. P., A finite-strain constitutive model for magnetorheological elastomers: Magnetic torques and fiber rotations, J. Mech. Phys. Solids, 61, 4, 1065-1090 (2013), URL http://www.sciencedirect.com/science/article/pii/S0022509612002463
[56] Hill, R., The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65, 5, 349-354 (1952)
[57] Loehnert, S.; Wriggers, P., Homogenisation of microheterogeneous materials considering interfacial delemination at finite strains, Tech. Mech., 23, 167-177 (2003)
[58] Peric, D.; de Souza Neto, E. A.; Feijoo, R. A.; Partovi, M.; Molina, A. J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation, Internat. J. Numer. Methods Engrg., 87, 1-5, 149-170 (2011), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3014 · Zbl 1242.74087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.