×

Boundary-trimmed 3D triangular mesh segmentation based on iterative merging strategy. (English) Zbl 1122.68684

Summary: This paper presents a segmentation algorithm for 3D triangular mesh data. The proposed algorithm uses iterative merging of adjacent triangle pairs based on their orientations. The oversegmented regions are merged again in an iterative region merging process. Finally, the noisy boundaries of each region are refined. The boundaries of each region contain perceptually important geometric information of the entire mesh model. According to the purpose of the segmentation, the proposed mesh-segmentation algorithm supports various types of segmentation by controlling parameters.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
68T10 Pattern recognition, speech recognition
Full Text: DOI

References:

[1] Inoue, K.; Itoh, T.; Yamada, A.; Furuhara, T.; Shimada, K., Face clustering of a large-scale CAD model for surface mesh generation, Comput.-Aided Des., 33, 3, 251-261 (2001)
[2] Mangan, A. P.; Whitaker, R. T., Partitioning 3D surface meshes using watershed segmentation, IEEE Trans. Visualization Comput. Graphics, 5, 4, 308-321 (1999)
[3] Kalvin, A. D.; Taylor, R. H., Superfaces: polygonal mesh simplification with bounded error, IEEE Comput. Graphics Appl., 16, 3, 64-77 (1996)
[4] M. Garland, A. Willmott, P.S. Heckbert, Hierarchical face clustering on polygonal surfaces, in: Proceedings of ACM Symposium on Interactive 3D Graphics, 2001, pp. 49-58.; M. Garland, A. Willmott, P.S. Heckbert, Hierarchical face clustering on polygonal surfaces, in: Proceedings of ACM Symposium on Interactive 3D Graphics, 2001, pp. 49-58.
[5] H. Hoppe, Progressive meshes, Proceedings of SIGGRAPH, 1996, pp. 99-108.; H. Hoppe, Progressive meshes, Proceedings of SIGGRAPH, 1996, pp. 99-108.
[6] M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: Proceedings of SIGGRAPH, 1997, pp. 209-216.; M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: Proceedings of SIGGRAPH, 1997, pp. 209-216.
[7] Yun, I. D.; Choo, K. W.; Lee, S. U., Mesh simplification using the edge attributes, EURASIP J.: Appl. Signal Process., 2002, 10, 1102-1115 (2002) · Zbl 1058.68719
[8] Zuckerberger, E.; Tal, A.; Shlafman, S., Polyhedral surface decomposition with applications, Comput. Graphics, 26, 5, 733-743 (2002)
[9] D.H. Kim, I.D. Yun, S.U. Lee, Multi-resolution modeling technique using mesh segmentation, in: Proceedings of International Technical Conference Circuits/Systems, Computers and Communications, vol. 1, 2000, pp. 474-477.; D.H. Kim, I.D. Yun, S.U. Lee, Multi-resolution modeling technique using mesh segmentation, in: Proceedings of International Technical Conference Circuits/Systems, Computers and Communications, vol. 1, 2000, pp. 474-477.
[10] Wani, M. A.; Batchelor, B. G., Edge-region-based segmentation of range images, IEEE Trans. Pattern Anal. Mach. Intell., 16, 3, 314-319 (1994)
[11] Krishnapuram, R.; Gupta, S., Morphological methods for detection and classification of edges in range images, Math. Imaging Vision, 2, 351-375 (1992) · Zbl 0770.68120
[12] Langridge, D. J., Detection of discontinuities in the first derivatives of surfaces, Computer Vision, Graphics Image Process., 27, 291-308 (1984)
[13] P. Checchin, L. Trassoudaine, J. Alizon, Segmentation of range images into planar regions, in: Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, 1997, pp. 156-163.; P. Checchin, L. Trassoudaine, J. Alizon, Segmentation of range images into planar regions, in: Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, 1997, pp. 156-163.
[14] Hoover, A.; Jean-Baptiste, G.; Jiang, X.; Flynn, P. J.; Bunke, H.; Goldgof, D. B.; Bowyer, K.; Eggert, D. W.; Fitzgibbon, A.; Fisher, R. B., An experimental comparison of range image segmentation algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 18, 7, 673-689 (1996)
[15] Bajaj, C. L.; Dey, T. K., Convex decompositions of polyhedra and robustness, SIAM J. Comput., 21, 339-364 (1992) · Zbl 0747.68093
[16] Chazelle, B.; Palios, L., Triangulating a nonconvex polytope, Discrete Comput. Geometry, 5, 505-526 (1990) · Zbl 0701.68038
[17] B. Chazelle, D.P. Dobkin, N. Shouraboura, A. Tal, Strategies for polyhedral surface decomposition: an experimental study, in: Proceedings of 11th Annual ACM Symposium on Computational Geometry, 1995, pp. 297-305.; B. Chazelle, D.P. Dobkin, N. Shouraboura, A. Tal, Strategies for polyhedral surface decomposition: an experimental study, in: Proceedings of 11th Annual ACM Symposium on Computational Geometry, 1995, pp. 297-305. · Zbl 1133.52305
[18] Katz, S.; Tal, A., Hierarchical mesh decomposition using fuzzy clustering and cuts, ACM Trans. Graphics, 22, 3, 954-961 (2003)
[19] Wu, K.; Levine, M. D., 3D part segmentation using simulated electrical charge distributions, IEEE Trans. Pattern Anal. Mach. Intell., 19, 11, 1223-1235 (1997)
[20] Yan, Z.; Kumar, S.; Kuo, C., Error resilent coding of 3D graphic models via adaptive mesh segmentation, IEEE Trans. Circuit Syst. Video Technol., 11, 860-873 (2001)
[21] F. Cutzu, Computing 3D object parts from similarities among object views, in: Proceeding of IEEE Computer Vision and Pattern Recognition, vol. 2, 2000, pp. 95-100.; F. Cutzu, Computing 3D object parts from similarities among object views, in: Proceeding of IEEE Computer Vision and Pattern Recognition, vol. 2, 2000, pp. 95-100.
[22] G. Papaioannou, E.A. Karabassi, T. Theoharis, Segmentation and surface characterization of arbitrary 3D meshes for object reconstruction and recognition, Proceedings of the International Conference on Pattern Recognition, 2000, pp. 734-737.; G. Papaioannou, E.A. Karabassi, T. Theoharis, Segmentation and surface characterization of arbitrary 3D meshes for object reconstruction and recognition, Proceedings of the International Conference on Pattern Recognition, 2000, pp. 734-737.
[23] D.H. Kim, I.D. Yun, S.U. Lee, Mesh segmentation technique for multi-resolution modeling, in: Proceedings of 12th Workshop on Image Processing and Image Understanding, 2000, pp. 281-284.; D.H. Kim, I.D. Yun, S.U. Lee, Mesh segmentation technique for multi-resolution modeling, in: Proceedings of 12th Workshop on Image Processing and Image Understanding, 2000, pp. 281-284.
[24] Duda, R. O.; Hart, P. E.; Stork, D. G., Pattern Classification (2001), Wiley: Wiley New York · Zbl 0968.68140
[25] Latecki, L. J.; Lakamper, R., Convexity rule for shape decomposition based on discrete contour evolution, Comput. Vision Image Understanding, 73, 3, 441-454 (1999)
[26] D.H. Kim, I.D. Yun, S.U. Lee, Triangular mesh segmentation based on surface Normal, in: Proceedings of Fifth Asian Conference on Computer Vision, 2002, pp. 616-621.; D.H. Kim, I.D. Yun, S.U. Lee, Triangular mesh segmentation based on surface Normal, in: Proceedings of Fifth Asian Conference on Computer Vision, 2002, pp. 616-621.
[27] S.H. Yun, I.D. Yun, D.H. Kim, S.U. Lee, Characteristic view point selection using the decomposed 3D model information, in: Proceedings of 15th Workshop on Image Processing and Image Understanding, 2003, pp. 443-448.; S.H. Yun, I.D. Yun, D.H. Kim, S.U. Lee, Characteristic view point selection using the decomposed 3D model information, in: Proceedings of 15th Workshop on Image Processing and Image Understanding, 2003, pp. 443-448.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.