×

Approximate convex decomposition of polyhedra and its applications. (English) Zbl 1172.65355

Summary: Decomposition is a technique commonly used to partition complex models into simpler components. While decomposition into convex components results in pieces that are easy to process, such decompositions can be costly to construct and can result in representations with an unmanageable number of components. In this paper we explore an alternative partitioning strategy that decomposes a given model into “approximately convex” pieces that may provide similar benefits as convex components, while the resulting decomposition is both significantly smaller (typically by orders of magnitude) and can be computed more efficiently. Indeed, for many applications, an approximate convex decomposition (acd) can more accurately represent the important structural features of the model by providing a mechanism for ignoring less significant features, such as surface texture. We describe a technique for computing acds of three-dimensional polyhedral solids and surfaces of arbitrary genus. We provide results illustrating that our approach results in high quality decompositions with very few components and applications showing that comparable or better results can be obtained using acd decompositions in place of exact convex decompositions (ecd) that are several orders of magnitude larger.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U10 Computing methodologies for image processing

Software:

FIST; SegMatch
Full Text: DOI

References:

[1] Bajaj, C.; Dey, T. K., Convex decomposition of polyhedra and robustness, SIAM J. Comput., 21, 339-364 (1992) · Zbl 0747.68093
[2] Barraquand, J.; Kavraki, L. E.; Latombe, J.-C.; Li, T.-Y.; Motwani, R.; Raghavan, P., A random sampling scheme for path planning, Int. J. of Rob. Res., 16, 6, 759-774 (1997)
[3] Bunke, H.; Kandel, A., Mean and maximum common subgraph of two graphs, Pattern Recogn. Lett., 21, 2, 163-168 (2000)
[4] Chazelle, B., 1981. Convex decompositions of polyhedra. In: Proc. 13th Annu. ACM Sympos. Theory Comput., pp. 70-79; Chazelle, B., 1981. Convex decompositions of polyhedra. In: Proc. 13th Annu. ACM Sympos. Theory Comput., pp. 70-79
[5] Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A., 1995. Strategies for polyhedral surface decomposition: An experimental study. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 297-305; Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A., 1995. Strategies for polyhedral surface decomposition: An experimental study. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 297-305 · Zbl 1133.52305
[6] Chazelle, B.; Palios, L., Decomposition algorithms in geometry, (Bajaj, C., Algebraic Geometry and its Applications (1994), Springer-Verlag), 419-447, (Chapter 27) · Zbl 0807.68093
[7] Choi, J.; Sellen, J.; Yap, C. K., Approximate Euclidean shortest paths in 3-space, Internat. J. Comput. Geom. Appl., 7, 4, 271-295 (1997) · Zbl 0883.68116
[8] Cohen-Steiner, D.; Alliez, P.; Desbrun, M., Variational shape approximation, ACM Trans. Graph., 23, 3, 905-914 (2004)
[9] Crosnier, A.; Rossignac, J., Tribox-based simplification of three-dimensional objects, Comput. Graph., 23, 3, 429-438 (1999)
[10] DeCarlo, D.; Finkelstein, A.; Rusinkiewicz, S.; Santella, A., Suggestive contours for conveying shape, ACM Trans. Graph., 22, 3, 848-855 (2003)
[11] Dey, T.K., Giesen, J., Goswami, S., 2003. Shape segmentation and matching with flow discretization. In: Proc. Workshop on Algorithms and Data Structures, pp. 25-36; Dey, T.K., Giesen, J., Goswami, S., 2003. Shape segmentation and matching with flow discretization. In: Proc. Workshop on Algorithms and Data Structures, pp. 25-36 · Zbl 1278.68331
[12] Erickson, J.; Har-Peled, S., Optimally cutting a surface into a disk, (Proceedings of the Eighteenth Annual Symposium on Computational Geometry (2002), ACM Press), 244-253 · Zbl 1060.68129
[13] Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R., 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In: Proc. ACM SIGGRAPH, pp. 249-254; Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R., 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In: Proc. ACM SIGGRAPH, pp. 249-254
[14] Funkhouser, T.; Kazhdan, M.; Shilane, P.; Min, P.; Kiefer, W.; Tal, A.; Rusinkiewicz, S.; Dobkin, D., Modeling by example, ACM Trans. Graph., 23, 3, 652-663 (2004)
[15] Goswami, S.; Dey, T. K.; Bajaj, C. L., Identifying flat and tubular regions of a shape by unstable manifolds, (SPM ’06: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling (2006), ACM Press: ACM Press New York, NY, USA), 27-37
[16] Hershberger, J., Snoeyink, J., 1992. Speeding up the Douglas-Peucker line simplification algorithm. In: Proc. 5th Internat. Sympos. Spatial Data Handling, pp. 134-143; Hershberger, J., Snoeyink, J., 1992. Speeding up the Douglas-Peucker line simplification algorithm. In: Proc. 5th Internat. Sympos. Spatial Data Handling, pp. 134-143
[17] Hubeli, A., Gross, M., 2001. Multiresolution feature extraction for unstructured meshes. In: Proceedings of the conference on Visualization ’01, pp. 287-294; Hubeli, A., Gross, M., 2001. Multiresolution feature extraction for unstructured meshes. In: Proceedings of the conference on Visualization ’01, pp. 287-294
[18] Joe, B., Tetrahedral mesh generation in polyhedral regions based on convex polyhedron decompositions, Internat. J. Numer. Methods Engrg., 37, 693-713 (1994) · Zbl 0800.73472
[19] Katz, S.; Tal, A., Hierarchical mesh decomposition using fuzzy clustering and cuts, ACM Trans. Graph., 22, 3, 954-961 (2003)
[20] Kavraki, L. E.; Svestka, P.; Latombe, J. C.; Overmars, M. H., Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Automat., 12, 4, 566-580 (1996)
[21] Keil, J. M., Polygon decomposition, (Sack, J.-R.; Urrutia, J., Handbook of Computational Geometry (2000), Elsevier Science Publishers B.V. North-Holland: Elsevier Science Publishers B.V. North-Holland Amsterdam), 491-518 · Zbl 0948.68189
[22] Kent, J. R.; Carlson, W. E.; Parent, R. E., Shape transformation for polyhedral objects, SIGGRAPH Comput. Graph., 26, 2, 47-54 (1992)
[23] Khodakovsky, A.; Litke, N.; Schröder, P., Globally smooth parameterizations with low distortion, ACM Trans. Graph., 22, 3, 350-357 (2003)
[24] Lai, Y.-K.; Zhou, Q.-Y.; Hu, S.-M.; Martin, R. R., Feature sensitive mesh segmentation, (SPM ’06: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling (2006), ACM Press: ACM Press New York, NY, USA), 17-25
[25] Lee, Y.; Lee, S.; Shamir, A.; Cohen-Or, D.; Seidel, H.-P., Mesh scissoring with minima rule and part salience, Comput. Aided Geom. Des., 22, 5, 444-465 (2005) · Zbl 1205.65120
[26] Lévy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 362-371; Lévy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 362-371
[27] Li, X., Toon, T.W., Huang, Z., 2001. Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 35-42; Li, X., Toon, T.W., Huang, Z., 2001. Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 35-42
[28] Lien, J.-M., Amato, N.M., 2004. Approximate convex decomposition of polygons. In: Proc. 20th Annual ACM Symp. Computat. Geom. (SoCG), pp. 17-26; Lien, J.-M., Amato, N.M., 2004. Approximate convex decomposition of polygons. In: Proc. 20th Annual ACM Symp. Computat. Geom. (SoCG), pp. 17-26 · Zbl 1376.68152
[29] Lien, J.-M.; Keyser, J.; Amato, N. M., Simultaneous shape decomposition and skeletonization, (SPM ’06: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling (2006), ACM Press: ACM Press New York, NY, USA), 219-228
[30] Liu, S.; Martin, R. R.; Langbein, F. C.; Rosin, P. L., Segmenting reliefs on triangle meshes, (SPM ’06: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling (2006), ACM Press: ACM Press New York, NY, USA), 7-16 · Zbl 1163.68356
[31] Mangan, A. P.; Whitaker, R. T., Partitioning 3d surface meshes using watershed segmentation, IEEE Trans. Vis. Comput. Graph., 5, 4, 308-321 (1999)
[32] Ohtake, Y.; Belyaev, A.; Seidel, H.-P., Ridge-valley lines on meshes via implicit surface fitting, ACM Trans. Graph., 23, 3, 609-612 (2004)
[33] Pauly, M., Keiser, R., Gross, M., 2003. Multi-scale feature extraction on point-sampled surfaces. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 281-289; Pauly, M., Keiser, R., Gross, M., 2003. Multi-scale feature extraction on point-sampled surfaces. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 281-289
[34] Praun, E.; Hoppe, H., Spherical parametrization and remeshing, ACM Trans. Graph., 22, 3, 340-349 (2003)
[35] Rom, H., Medioni, G., 1994. Part decomposition and description of 3d shapes. In: Proc. International Conference of Pattern Recognition, pp. 629-632; Rom, H., Medioni, G., 1994. Part decomposition and description of 3d shapes. In: Proc. International Conference of Pattern Recognition, pp. 629-632
[36] Rusinkiewicz, S., 2004. Estimating curvatures and their derivatives on triangle meshes. In: 3D Data Processing, Visualization, and Transmission, 2nd International Symposium on (3DPVT’04), pp. 486-493; Rusinkiewicz, S., 2004. Estimating curvatures and their derivatives on triangle meshes. In: 3D Data Processing, Visualization, and Transmission, 2nd International Symposium on (3DPVT’04), pp. 486-493
[37] Shapiro, A.; Tal, A., Polyhedron realization for shape transformation, Vis. Comput., 14, 8/9, 429-444 (1998)
[38] Sharir, M.; Schorr, A., On shortest paths in polyhedral spaces, SIAM J. Comput., 15, 193-215 (1986) · Zbl 0612.68090
[39] Sklansky, J., Measuring concavity on rectangular mosaic, IEEE Trans. Comput., C-21, 1355-1364 (1972) · Zbl 0247.68046
[40] White, E. R., Assessment of line-generalization algorithms using characteristic points, Amer. Cartographer, 12, 1, 17-27 (1985)
[41] Wood, Z.; Hoppe, H.; Desbrun, M.; Schröder, P., Removing excess topology from isosurfaces, ACM Trans. Graph., 23, 2, 190-208 (2004)
[42] Wu, K., Levine, M.D., 1994. Recovering parametric geons from multiview range data. In: Proc. International Conference of Pattern Recognition, pp. 159-166; Wu, K., Levine, M.D., 1994. Recovering parametric geons from multiview range data. In: Proc. International Conference of Pattern Recognition, pp. 159-166
[43] Wu, K.; Levine, M. D., 3d part segmentation using simulated electrical charge distributions, IEEE Trans. Pattern Anal. Machine Intell., 19, 11, 1223-1235 (1997)
[44] Yamauchi, H.; Lee, S.; Lee, Y.; Ohtake, Y.; Belyaev, A.; Seidel, H.-P., Feature sensitive mesh segmentation with mean shift, (SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI’ 05) (2005), IEEE Computer Society: IEEE Computer Society Washington, DC, USA), 238-245
[45] Yoshizawa, S.; Belyaev, A.; Seidel, H.-P., Fast and robust detection of crest lines on meshes, (SPM ’05: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling (2005), ACM Press: ACM Press New York, NY, USA), 227-232
[46] Zhang, E.; Mischaikow, K.; Turk, G., Feature-based surface parameterization and texture mapping, ACM Trans. Graph., 24, 1, 1-27 (2005)
[47] Zunic, J., Rosin, P.L., 2002. A convexity measurement for polygons. In: British Machine Vision Conference, pp. 173-182; Zunic, J., Rosin, P.L., 2002. A convexity measurement for polygons. In: British Machine Vision Conference, pp. 173-182 · Zbl 1039.68588
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.