×

A semiparametric model for hyperspectral anomaly detection. (English) Zbl 1268.62044

Summary: Using hyperspectral (HS) technology, this paper introduces an autonomous scene anomaly detection approach based on the asymptotic behavior of a semiparametric model under a multisample testing and minimum-order statistic scheme. Scene anomaly detection has a wide range of use in remote sensing applications, requiring no specific material signatures. Uniqueness of the approach includes the following: (i) only a small fraction of the HS cube is required to characterize the unknown clutter background, while existing global anomaly detectors require the entire cube; (ii) the utility of a semiparematric model, where underlying distributions of spectra are not assumed to be known but related through an exponential function; (iii) derivation of the asymptotic cumulative probability of the approach making mistakes, allowing the user some control of probabilistic errors. The results using real HS data are promising for autonomous manmade object detection in difficult natural clutter backgrounds from two viewing perspectives: nadir and forward looking.

MSC:

62G10 Nonparametric hypothesis testing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62G30 Order statistics; empirical distribution functions
62G99 Nonparametric inference
62G20 Asymptotic properties of nonparametric inference

Software:

fminsearch

References:

[1] R. Shcowengerdt, Remote Sensing, Models and Methods for Image Processing, Academic, San Diego, Calif, USA, 2nd edition, 1997.
[2] D. G. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 29-43, 2002. · doi:10.1109/79.974724
[3] D. Manolakis, “Taxonomy of detection algorithms for hyperspectral imaging applications,” Optical Engineering, vol. 44, no. 6, pp. 1-11, 2005. · doi:10.1117/1.1930927
[4] D. G. Manolakis and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” IEEE Signal Processing Magazine, vol. 14, pp. 79-116, 2003.
[5] P. H. Suen, G. Healey, and D. Slater, “The impact of viewing geometry on material discriminability in hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1352-1359, 2001. · doi:10.1109/36.934068
[6] G. Healey, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 6, pp. 2706-2717, 1999. · doi:10.1109/36.803418
[7] X. Yu, L. E. Hoff, I. S. Reed, A. M. Chen, and L. B. Stotts, “Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach,” IEEE Transactions on Image Processing, vol. 6, no. 1, pp. 143-156, 1997.
[8] H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 2, pp. 388-397, 2005. · doi:10.1109/TGRS.2004.841487
[9] S. Matteoli, M. Diani, and G. Corsini, “Different approaches for improved covariance matrix estimation in hyperspectral anomaly detection,” in Riunione Annuale dell’Associazione Gruppo Nazionale Telecomunicazioni e Tecnologie dell’Informazione, pp. 1-8, 2009. · doi:10.1117/12.830445
[10] A. Banerjee, P. Burlina, and C. Diehl, “A support vector method for anomaly detection in hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 8, pp. 2282-2291, 2006. · doi:10.1109/TGRS.2006.873019
[11] Y. Tan and J. Wang, “A support vector machine with a hybrid kernel and minimal vapnik-chervonenkis dimension,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 4, pp. 385-395, 2004. · doi:10.1109/TKDE.2004.1269664
[12] P. Gurram and H. Kwon, “Support-vector-based hyperspectral anomaly detection using optimized kernel parameters,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 6, pp. 1060-1064, 2011. · doi:10.1109/LGRS.2011.2155030
[13] S. Khazai, S. Homayouni, A. Safari, and B. Mojaradi, “Anomaly detection in hyperspectral images based on an adaptive support vector method,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 4, pp. 646-650, 2011. · doi:10.1109/LGRS.2010.2098842
[14] D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker, “Anomaly detection from hyperspectral imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58-69, 2002. · doi:10.1109/79.974730
[15] P. Hytla, R. C. Hardie, M. T. Eismann, and J. Meola, “Anomaly detection in hyperspectral imagery: a comparison of methods using seasonal data,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565 of Proceedings of SPIE, September 2007. · doi:10.1117/12.718381
[16] S. Matteoli, F. Carnesecchi, M. Diani, G. Corsini, and L. Chiarantini, “Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set,” in Image and Signal Processing for Remote Sensing XIII, vol. 6748 of Proceedings of SPIE, September 2007. · doi:10.1117/12.738062
[17] H. Kwon, S. Z. Der, and N. M. Nasrabadi, “Adaptive anomaly detection using subspace separation for hyperspectral imagery,” Optical Engineering, vol. 42, no. 11, pp. 3342-3351, 2003. · doi:10.1117/1.1614265
[18] A. Stocker, “Stochastic expectation maximization (SEM) algorithm,” in Proceedings of the DARPA Adaptive Spectral Reconnaissance Algorithm Workshop, 1999.
[19] P. Masson and W. Pieczynski, “SEM algorithm and unsupervised statistical segmentation of satellite images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 31, no. 3, pp. 618-633, 1993. · doi:10.1109/36.225529
[20] D. Rosario, Algorithm development for hyperspectral anomaly detection [Ph.D. dissertation], The University of Maryland, College Park, Md, USA, 2008.
[21] J. Qin and B. Zhang, “A goodness-of-fit test for logistic regression models based on case-control data,” Biometrika, vol. 84, no. 3, pp. 609-618, 1997. · Zbl 0888.62045 · doi:10.1093/biomet/84.3.609
[22] K. Fokianos, J. Qin, B. Kedem, and D. A. Short, “Semiparametric approach to the one-way layout,” Technometrics, vol. 43, no. 1, pp. 56-65, 2001. · Zbl 1072.62583 · doi:10.1198/00401700152404327
[23] D. Rosario, “A semiparametric approach using the discriminant metric SAM (spectral angle mapper),” in Automatic Target Recognition XIV, vol. 5426 of Proceedings of SPIE, pp. 58-66, September 2004. · doi:10.1117/12.541005
[24] B. Kedem, Time Series Analysis by Higher Order Crossings, IEEE Press, New York, NY, USA, 1994. · Zbl 0818.62077
[25] E. L. Lehmann, Testing Statistical Hypotheses, Chapman & Hall, New York, NY, USA, 2nd edition, 1993. · Zbl 0805.62023
[26] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112-147, 1999. · Zbl 1005.90056 · doi:10.1137/S1052623496303470
[27] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw -Hill, Boston, Mass, USA, 3rd edition, 2000. · Zbl 0489.65007
[28] G. Casella and R. L. Berger, Statistical Inference, Dexbury Press, Belmont, Calif, USA, 1990. · Zbl 0699.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.