×

CNED sets: countably negligible for extremal distances. (English) Zbl 1543.30065

Summary: The author has recently introduced the class of \(CNED\) sets in Euclidean space, generalizing the classical notion of \(NED\) sets, and shown that they are quasiconformally removable. A set \(E\) is \(CNED\) if the conformal modulus of a curve family is not affected when one restricts to the subfamily intersecting \(E\) at countably many points. We prove that several classes of sets that were known to be removable are also \(CNED\), including sets of \(\sigma\)-finite Hausdorff \((n-1)\)-measure and boundaries of domains with \(n\)-integrable quasihyperbolic distance. Thus, this work puts in common framework many known results on the problem of quasiconformal removability and suggests that the \(CNED\) condition should also be necessary for removability. We give a new necessary and sufficient criterion for closed sets to be \((C)NED\). Applying this criterion, we show that countable unions of closed \((C)NED\) sets are \((C)NED\). Therefore we enlarge significantly the known classes of quasiconformally removable sets.

MSC:

30C62 Quasiconformal mappings in the complex plane
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

References:

[1] Ahlfors, L.; Beurling, A., Conformal invariants and function-theoretic null-sets, Acta Math., 83, 101-129, 1950 · Zbl 0041.20301 · doi:10.1007/BF02392634
[2] Aseev, VV; Syčev, AV, Sets that are removable for quasiconformal mappings in space, Sibirsk. Mat. Ž., 15, 1213-1227, 1974 · Zbl 0309.30023
[3] Aseev, VV, NED sets lying in a hyperplane, Sibirsk. Mat. Zh., 50, 5, 967-986, 2009 · Zbl 1224.30106
[4] Burago, D.; Burago, Y.; Ivanov, S., A course in metric geometry, Graduate Studies in Mathematics, 2001, Providence, RI: American Mathematical Society, Providence, RI · Zbl 0981.51016
[5] Besicovitch, AS, On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighbourhood of non-isolated singular points, Proc. Lond. Math. Soc. (2), 32, 1, 1-9, 1931 · JFM 56.0272.01 · doi:10.1112/plms/s2-32.1.1
[6] Bishop, CJ, Some homeomorphisms of the sphere conformal off a curve, Ann. Acad. Sci. Fenn. Ser. A I Math., 19, 2, 323-338, 1994 · Zbl 0810.30007
[7] Bogachev, VI, Measure Theory, 2007, Berlin: Springer-Verlag, Berlin · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[8] Bojarski, B.: Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Mathematics. Springer, Berlin, pp. 52-68 (1987) · Zbl 0662.46037
[9] Carleson, L., On null-sets for continuous analytic functions, Ark. Mat., 1, 311-318, 1951 · Zbl 0042.30902 · doi:10.1007/BF02591368
[10] Federer, H., Geometric measure theory, Grundlehren der mathematischen Wissenschaften, 1969, New York: Springer-Verlag New York Inc., New York · Zbl 0176.00801
[11] Fremlin, DH, Spaces of finite length, Proc. Lond. Math. Soc. (3), 64, 3, 449-486, 1992 · Zbl 0724.54021 · doi:10.1112/plms/s3-64.3.449
[12] Gehring, FW, Rings and quasiconformal mappings in space, Trans. Am. Math. Soc., 103, 353-393, 1962 · Zbl 0113.05805 · doi:10.1090/S0002-9947-1962-0139735-8
[13] Gehring, FW; Martio, O., Quasiextremal distance domains and extension of quasiconformal mappings, J. Anal. Math., 45, 181-206, 1985 · Zbl 0596.30031 · doi:10.1007/BF02792549
[14] Hajłasz, P.: Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002): Contemp. Math., Amer. Math. Soc. Providence, RI, pp. 173-218 (2003) · Zbl 1048.46033
[15] Heinonen, J.: Lectures on analysis on metric spaces. Universitext, Springer-Verlag, New York (2001) · Zbl 0985.46008
[16] Hesse, J., A p-extremal length and p-capacity equality, Ark. Mat., 13, 131-144, 1975 · Zbl 0302.31009 · doi:10.1007/BF02386202
[17] Herron, DA; Koskela, P., Quasiextremal distance domains and conformal mappings onto circle domains, Complex Var. Theory Appl., 15, 3, 167-179, 1990 · Zbl 0682.30011
[18] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge (2015) · Zbl 1332.46001
[19] He, Z-X; Schramm, O., Rigidity of circle domains whose boundary has \(\sigma \)-finite linear measure, Invent. Math., 115, 2, 297-310, 1994 · Zbl 0809.30006 · doi:10.1007/BF01231761
[20] Järvenpää, E., Järvenpää, M., Rogovin, K., Rogovin, S., Shanmugalingam, N.: Measurability of equivalence classes and \(MEC_p\)-property in metric spaces. Rev. Mat. Iberoam. 23(3), 811-830 (2007) · Zbl 1146.28001
[21] Jones, P.W.: On removable sets for Sobolev spaces in the plane, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., Princeton Univ. Press, Princeton, NJ, pp. 250-267 (1995) · Zbl 0839.30020
[22] Jones, PW; Smirnov, SK, Removability theorems for Sobolev functions and quasiconformal maps, Ark. Mat., 38, 2, 263-279, 2000 · Zbl 1034.30014 · doi:10.1007/BF02384320
[23] Kaufman, R., Fourier-Stieltjes coefficients and continuation of functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 27-31, 1984 · Zbl 0565.30016 · doi:10.5186/aasfm.1984.0909
[24] Kallunki, S.; Koskela, P., Exceptional sets for the definition of quasiconformality, Am. J. Math., 122, 4, 735-743, 2000 · Zbl 0954.30008 · doi:10.1353/ajm.2000.0028
[25] Koskela, P.; Nieminen, T., Quasiconformal removability and the quasihyperbolic metric, Indiana Univ. Math. J., 54, 1, 143-151, 2005 · Zbl 1078.30016 · doi:10.1512/iumj.2005.54.2690
[26] Kaufman, R.; Wu, J-M, On removable sets for quasiconformal mappings, Ark. Mat., 34, 1, 141-158, 1996 · Zbl 0862.30020 · doi:10.1007/BF02559512
[27] Maio, S.; Ntalampekos, D., On the Hausdorff dimension of the residual set of a packing by smooth curves, J. Lond. Math. Soc., 105, 3, 1752-1786, 2022 · Zbl 1520.52010 · doi:10.1112/jlms.12546
[28] Ntalampekos, D.: Non-removability of the Sierpiński gasket. Invent. Math. 216(2), 519-595 (2019) · Zbl 1426.30012
[29] Ntalampekos, D., A removability theorem for Sobolev functions and detour sets, Math. Z., 296, 41-72, 2020 · Zbl 1472.30010 · doi:10.1007/s00209-019-02405-7
[30] Ntalampekos, D.: Non-removability of Sierpiński carpets. Indiana Univ. Math. J. 70(3), 847-854 (2021) · Zbl 1479.30006
[31] Ntalampekos, D., Rigidity and continuous extension for conformal maps of circle domains, Trans. Am. Math. Soc., 376, 7, 5221-5239, 2023 · Zbl 1527.30020 · doi:10.1090/tran/8923
[32] Ntalampekos, D. Metric definition of quasiconformality and exceptional sets, Math. Ann. 389(3), 3231-3253 (2024) · Zbl 07867556
[33] Ntalampekos, D., Wu, J.-M.: Non-removability of Sierpiński spaces. Proc. Am. Math. Soc. 148, 203-212 (2020) · Zbl 1437.30008
[34] Ntalampekos, D.; Younsi, M., Rigidity theorems for circle domains, Invent. Math., 220, 1, 129-183, 2020 · Zbl 1439.30020 · doi:10.1007/s00222-019-00921-1
[35] Pesin, IN, Metric properties of Q-quasiconformal mappings, Mat. Sb. N.S, 40, 82, 281-294, 1956 · Zbl 0072.29601
[36] Shlyk, VA, On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh., 34, 6, 216-221, 1993 · Zbl 0810.31004
[37] Sierpiński, W.: Sur un problème concernant les ensembles mesurables superficiellement. Fund. Math. 1(1), 112-115 (1920) · JFM 47.0180.04
[38] Smith, W., Stegenga, D.A.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319(1), 67-100 (1990) · Zbl 0707.46028
[39] Stein, EM, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 1970, Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0207.13501
[40] Tukia, P., Hausdorff dimension and quasisymmetric mappings, Math. Scand., 65, 1, 152-160, 1989 · Zbl 0677.30016 · doi:10.7146/math.scand.a-12274
[41] Väisälä, J.: On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. A I(322), 1-12 (1962) · Zbl 0119.29503
[42] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer-Verlag, Berlin-New York (1971) · Zbl 0221.30031
[43] Vodopyanov, S.K., Goldshtein, V.M.: A test of the removability of sets for \(L^1_p\) spaces of quasiconformal and quasi-isomorphic mappings. Sibirsk. Mat. Z. 18(1), 48-68 (1977) · Zbl 0349.46031
[44] Willard, S.: General topology, Addison-Wesley Publishing Co., Reading, Mass.-London- Don Mills, Ont. (1970) · Zbl 0205.26601
[45] Wu, J-M, Removability of sets for quasiconformal mappings and Sobolev spaces, Complex Var. Theory Appl., 37, 1-4, 491-506, 1998 · Zbl 1054.46508
[46] Younsi, M., On removable sets for holomorphic functions, EMS Surv. Math. Sci., 2, 2, 219-254, 2015 · Zbl 1331.30002 · doi:10.4171/emss/12
[47] Younsi, M., Removability, rigidity of circle domains and Koebe’s conjecture, Adv. Math., 303, 1300-1318, 2016 · Zbl 1353.30007 · doi:10.1016/j.aim.2016.08.039
[48] Ziemer, W.P.: Weakly differentiable functions: Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, vol. 120. Springer-Verlag, New York (1989) · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.