×

Extremal functions for modules of systems of measures. (English) Zbl 1387.30026

Authors’ abstract: We extend a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module of a foliated family of curves in \(\mathbb R^2\) to \(\mathbb R^n\) making use of Fuglede’s \(p\)-module of systems of measures. The extremal functions are identified and the \(p\)-module of systems of measures is computed in condensers of rather general type and in their images under homeomorphisms of certain regularity. At the beginning, we discuss and apply Rodin’s Theorem in order to obtain estimates for the conformal modules of parallelograms and ring domains in terms of directional dilatations.

MSC:

30C75 Extremal problems for conformal and quasiconformal mappings, other methods

References:

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975. · Zbl 0314.46030
[2] L. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Co., New York, 1973. · Zbl 0272.30012
[3] L. Ahlfors, Lectures on Quasiconformal Mappings, second edition, American Mathematical Society, Provicence, RI, 2006. · Zbl 1103.30001 · doi:10.1090/ulect/038
[4] L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), 101-129. · Zbl 0041.20301 · doi:10.1007/BF02392634
[5] G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, and M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1-37. · Zbl 0951.33012 · doi:10.2140/pjm.2000.192.1
[6] H. Aikawa and M. Ohtsuka, Extremal length of vector measures, Ann. Acad. Sci. Fenn. Math., 24 (1999), 61-88. · Zbl 0940.31006
[7] C. Andreian Cazacu, On the length-area dilatation, Complex. Var. Theory. Appl., 50 (2005), 765-776. · Zbl 1094.30022
[8] M. Badger, Beurling’s criterion and extremal metrics for Fuglede modulus, Ann. Acad. Sci. Fenn., Math., 38 (2013), 677-689. · Zbl 1295.31017
[9] M. Brakalova, On the asymptotic behavior of some conformal and quasiconformal mappings, Ph.D. Thesis, Sofia University, Sofia, 1988. · Zbl 0639.30022
[10] M. A. Brakalova and J. A. Jenkins, On solutions of the Beltrami equation, J. Anal. Math., 76 (1998), 67-92. · Zbl 0921.30015 · doi:10.1007/BF02786930
[11] M. Brakalova and J. A. Jenkins, On a paper of Carleson: “On mappings conformal at the boundary”, Ann. Acad. Sci. Fenn. Math., 27 (2002), 485-490. · Zbl 1077.30018
[12] M. Brakalova, Sufficient and necessary conditions for conformality.Part II. Analytic viewpoint, Ann. Acad. Sci. Fenn. Math., 35 (2010), 235-254. · Zbl 1198.30018 · doi:10.5186/aasfm.2010.3514
[13] Brakalova, M., On local stability of solutions to the Beltrami equation with degeneration, 65-76 (2013), Bulgarian Acad. Sci. · Zbl 1301.30007
[14] M. Csörnyei, S. Hencl, and Y. Malý, Homeomorphisms in the Sobolev space W1, n-1, J. Reine Angew. Math., 644 (2010), 221-235. · Zbl 1210.46023
[15] V. Dubinin and M. Vuorinen, On conformal moduli of polygonal quadrilaterals, Israel J. Math, 171 (2009), 111-125. · Zbl 1182.30011 · doi:10.1007/s11856-009-0043-8
[16] A. Ya. Dubovickiĭ, On the structure of level sets of differentiable mappings of an n-dimensional cube into a k-dimensional cube, Izv. Akad. Nauk SSSR. Ser. Mat., 21 (1957), 371-408. · Zbl 0136.04002
[17] H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[18] B. Fuglede, Extremal length and functional completion, Acta Math., 98 (1957), 171-219. · Zbl 0079.27703 · doi:10.1007/BF02404474
[19] J. Garnett and D. Marshall, Harmonic Measure, Cambridge University Press, Cambridge, 2005. · Zbl 1077.31001 · doi:10.1017/CBO9780511546617
[20] F.W. Gehring, Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J., 9 (1962), 137-150. · Zbl 0109.04904 · doi:10.1307/mmj/1028998672
[21] Grötzsch, H., Eleven papers (1928)
[22] V. Gutlyanskii and O. Martio, Conformality of a quasiconformal mapping at a point, J. Anal. Math., 91 (2003), 179-192. · Zbl 1070.30007 · doi:10.1007/BF02788786
[23] P. Hajlasz, Change of variables formula under minimal assumptions, Colloq. Math., 64 (1993), 93-101. · Zbl 0840.26009 · doi:10.4064/cm-64-1-93-101
[24] P. Hajlasz, Sobolev mappings, co-area formula and related topics, Proceedings on Analysis and Geometry, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000, pp. 227-254. · Zbl 0988.28002
[25] H. Hakula, A. Rasila, and M. Vuorinen, On moduli of rings and quadrilaterals: algorithms and experiments, SIAM J. Sci. Comput., 33 (2011), 279-302. · Zbl 1368.65036 · doi:10.1137/090763603
[26] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144. · Zbl 0302.31009 · doi:10.1007/BF02386202
[27] T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford University Press, New York, 2001. · Zbl 1045.30011
[28] J. A. Jenkins, Univalent Functions and Conformal mapping, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. · Zbl 0083.29606 · doi:10.1007/978-3-642-88563-1
[29] O. Lehto, Homeomorphisms with a given dilatation, Proceedings of the 15th Scandanavian Conference, Oslo, 1968, Springer, Berlin, 1970, pp. 58-73. · Zbl 0193.03703
[30] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag, New York-Heidelberg, 1973. · Zbl 0267.30016 · doi:10.1007/978-3-642-65513-5
[31] J. Malý, D. Swanson, and W. P. Ziemer, The co-area formula for Sobolev mappings, Trans.Amer. Math. Soc., 355 (2003), 477-492. · Zbl 1034.46032 · doi:10.1090/S0002-9947-02-03091-X
[32] I. Markina, On coincidence of p-module of a family of curves and p-capacity on the Carnot group, Rev. Mat. Iberoamericana,, 19 (2003), 143-160. · Zbl 1038.31006 · doi:10.4171/RMI/340
[33] O. Martio and W. P. Zimmer, Luzin’s condition (N) and mappings with nonnegative Jacobians, Michigan Math. J., 39 (1992), 495-508. · Zbl 0807.46032 · doi:10.1307/mmj/1029004603
[34] F. Morgan, Geometric Measure Theory, a Beginner’s Guide, second edition, Academic Press, Boston, 1995. · Zbl 0819.49024
[35] M. Ohtsuka, Extremal length and precise functions, Gakkōtosho Co., Tokyo, 2003. · Zbl 1075.31001
[36] C. Pommeremke, Boundary Behavior of Conformal Maps, Springer Verlag, Berlin, 1992. · Zbl 0762.30001 · doi:10.1007/978-3-662-02770-7
[37] A. Rasila and M. Vuorinen, Experiments with moduli of quadrilaterals, Rev. Roumaine Math. Pures Appl. 51 (2006), 747-757. · Zbl 1120.65030
[38] E. Reich, Steiner symmetrization and the conformal moduli of parallelograms, Analysis and Topology, World Sci. Publ., River Edge, NJ, 1998, pp. 615-620. · Zbl 0938.30029
[39] E. Reich and H. Walczak, On the behavior of quasiconformal mappings at a point, Trans. Amer. Math. Soc., 117 (1965), 338-351. · Zbl 0178.08301 · doi:10.1090/S0002-9947-1965-0176070-9
[40] B. Rodin, The method of extremal length, Bull. Amer. Math. Soc., 80 (1974), 587-606. · Zbl 0286.30014 · doi:10.1090/S0002-9904-1974-13517-2
[41] B. Rodin and S. E. Warschawski, Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 2 (1976), 467-500. · Zbl 0348.30007 · doi:10.5186/aasfm.1976.0231
[42] B. Rodin and S. E. Warschawski, Extremal length and univalent functions. I. The angular derivative, Math. Z., 153 (1977), 1-17. · Zbl 0384.30006 · doi:10.1007/BF01214728
[43] V. A. Shlyk, Capacity of a condenser and the modulus of a family of separating surfaces, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 185 (1990), 168-182, 187; translation in J. Soviet Math. 59 (1992), 1240-1248. · Zbl 0734.31008
[44] V. A. Shlyk, On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh., 34 (1993), no. 6, 216-221; translation in Siberian Math. J. 34 (1993), 1196-1200. · Zbl 0810.31004
[45] O. Teichmüller, Untersuchungen über konforme und quasikonforme Abhildungen, Deutsche Math., 3 (1938), 621-678. · JFM 64.0313.06
[46] A. Vasil’ev, Moduli of Families of Curves for Conformal and Quasiconformal Mappings, Springer-Verlag, Berlin, 2002. · Zbl 0999.30001 · doi:10.1007/b83857
[47] S. K. Vodopyanov, Regularity of mappings inverse to Sobolev mappings, Mat. Sb., 203 (2012), no. 10, 3-32; translation in Sb. Math. 203 (2012), 1383-1410. · Zbl 1266.26019 · doi:10.4213/sm7792
[48] J. Väisälä, On quasiconformal mapping in space, Ann. Acad. Sci. Fenn. Ser. AI 298 (1961). · Zbl 0096.27506
[49] L. I. Volkovyskii, Investigation of the type problem for a simply connected Riemann surface, Trudy Mat. Inst. Steklov. 34 (1950). · Zbl 1038.31006
[50] W. P. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc., 126 (1967), 460-473. · Zbl 0177.34002 · doi:10.1090/S0002-9947-1967-0210891-0
[51] W. P. Ziemer, Extremal length and p-capacity, Michigan Math. J., 16 (1969), 43-51. · Zbl 0172.38701 · doi:10.1307/mmj/1029000164
[52] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J., 17 (1970), 117-128. · Zbl 0183.39104 · doi:10.1307/mmj/1029000421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.