×

On limits at infinity of weighted Sobolev functions. (English) Zbl 1504.46039

Summary: We study necessary and sufficient conditions for a Muckenhoupt \(\mathcal{A}_p\)-weight \(w \in L_{\operatorname{loc}}^1(\mathbb{R}^d)\) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions \(u \in W_{\operatorname{loc}}^{1, p}(\mathbb{R}^d, w)\) with a \(p\)-integrable gradient \(| \nabla u | \in L^p(\mathbb{R}^d, w)\) where \(1 \leq p < \infty\) and \(2 \leq d < \infty\). The question is shown to subtly depend on the sense in which the limit is taken.
First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of C. Fefferman [Ann. Inst. Fourier 24, No. 3, 159–164 (1974; Zbl 0292.26013)] and S. V. Uspenskij [Transl., Ser. 2, Am. Math. Soc. 87, 121–145 (1961; Zbl 0198.46106); translation from Trudy Mat. Inst. Steklov 60, 282–303 (1961)].
As applications to partial differential equations, we give results on the limiting behavior of weighted \(q\)-harmonic functions at infinity \((1 < q < \infty)\), which depend on the integrability degree of its gradient.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
26B35 Special properties of functions of several variables, Hölder conditions, etc.
42B35 Function spaces arising in harmonic analysis

References:

[1] Björn, Jana, Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn., Math., 26, 1, 175-188 (2001) · Zbl 1002.46023
[2] Björn, Anders; Björn, Jana, Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17 (2011), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1231.31001
[3] Björn, Anders; Björn, Jana; Shanmugalingam, Nageswari, Locally p-admissible measures on \(\mathbb{R} \), J. Funct. Anal., 278, 4, Article 108344 pp. (2020) · Zbl 1431.26012
[4] Björn, Jana; Buckley, Stephen; Keith, Stephen, Admissible measures in one dimension, Proc. Am. Math. Soc., 134, 3, 703-705 (2006) · Zbl 1085.26008
[5] Cavalheiro, Albo Carlos, Existence and approximation of solutions for a class of degenerate elliptic equations with Neumann boundary condition, Note Mat., 40, 2, 63-81 (2020) · Zbl 1471.35150
[6] Chua, Seng-Kee, Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J., 41, 4, 1027-1076 (1992) · Zbl 0767.46025
[7] Duoandikoetxea, Javier; Moyua, Adela; Oruetxebarria, Osane; Seijo, Edurne, Radial \(A_p\) weights with applications to the disc multiplier and the Bochner-Riesz operators, Indiana Univ. Math. J., 57, 3, 1261-1281 (2008) · Zbl 1268.42018
[8] Dyda, Bartłomiej; Ihnatsyeva, Lizaveta; Lehrbäck, Juha; Tuominen, Heli; Vähäkangas, Antti V., Muckenhoupt \(A_p\)-properties of distance functions and applications to Hardy-Sobolev-type inequalities, Potential Anal., 50, 1, 83-105 (2019) · Zbl 1405.42031
[9] Evans, Lawrence C.; Gariepy, Ronald F., Measure Theory and Fine Properties of Functions, Textbooks in Mathematics (2015), CRC Press: CRC Press Boca Raton, FL · Zbl 1310.28001
[10] Fabes, Eugene B.; Kenig, Carlos E.; Serapioni, Raul P., The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., 7, 1, 77-116 (1982) · Zbl 0498.35042
[11] Fefferman, Charles, Convergence on almost every line for functions with gradient in \(L^p( \mathbf{R}^n)\), Ann. Inst. Fourier (Grenoble), 24, 3 (1974), vii, 159-164 · Zbl 0292.26013
[12] Hajłasz, Piotr; Kinnunen, Juha, Hölder quasicontinuity of Sobolev functions on metric spaces, Rev. Mat. Iberoam., 14, 3, 601-622 (1998) · Zbl 1155.46306
[13] Hajłasz, Piotr; Koskela, Pekka, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math., 320, 10, 1211-1215 (1995) · Zbl 0837.46024
[14] Hajłasz, Piotr; Koskela, Pekka, Sobolev met Poincaré, Mem. Am. Math. Soc., 145, 688 (2000), x+101 · Zbl 0954.46022
[15] Heinonen, Juha; Kilpeläinen, Tero; Martio, Olli, Nonlinear Potential Theory of Degenerate Elliptic Equations (2006), Dover Publications, Inc.: Dover Publications, Inc. Mineola, NY, Unabridged republication of the 1993 original · Zbl 1115.31001
[16] Heinonen, Juha; Koskela, Pekka, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77, 2, 251-271 (1995) · Zbl 0860.30018
[17] Heinonen, Juha; Koskela, Pekka; Shanmugalingam, Nageswari; Tyson, Jeremy, Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs (2015), Cambridge University Press: Cambridge University Press United Kingdom · Zbl 1332.46001
[18] Koskela, Pekka; Nguyen, Khanh, Existence and uniqueness of limits at infinity for homogeneous Sobolev functions · Zbl 1498.46049
[19] Koskela, Pekka; Nguyen, Khanh; Wang, Zhuang, Trace and density results on regular trees, Potential Anal., 57, 101-128 (2022) · Zbl 1498.46049
[20] Kudryavtsev, L. D., The stabilization of functions at infinity and near a hyperplane, (Theory of Functions and Its Applications (Collection of Articles Dedicated to Sergeĭ Mihaĭlovič Nikol′skiĭ on the Occasion of His Seventieth Birthday). Theory of Functions and Its Applications (Collection of Articles Dedicated to Sergeĭ Mihaĭlovič Nikol′skiĭ on the Occasion of His Seventieth Birthday), Trudy Mat. Inst. Steklov., vol. 134 (1975)), 124-141, 409
[21] Nguyen, Khanh, Classification criteria for regular trees, Ann. Fenn. Math., 47, 1, 3-21 (2022) · Zbl 1483.31030
[22] Phan, Tuoc, Weighted Calderón-Zygmund estimates for weak solutions of quasi-linear degenerate elliptic equations, Potential Anal., 52, 3, 393-425 (2020) · Zbl 1435.35174
[23] Portnov, V. R., On the question of the emergence of functions belonging to the space \(W_{p , \nu}^{( 1 )}\) to a constant, Dokl. Akad. Nauk SSSR, 215, 550-553 (1974)
[24] Rychkov, Vyacheslav S., Littlewood-Paley theory and function spaces with \(A_p^{\operatorname{loc}}\) weights, Math. Nachr., 224, 145-180 (2001) · Zbl 0984.42011
[25] Stein, Elias M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43 (1993), Princeton University Press: Princeton University Press Princeton, NJ, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III · Zbl 0821.42001
[26] Tarasova, I. M.; Shlyk, V. A., Weighted Sobolev spaces, capacities and exceptional sets, Sib. Èlektron. Mat. Izv., 17, 1552-1570 (2020) · Zbl 1466.46031
[27] Timan, A. F., Two examples for S. V. Uspenskiĭ’s lemma, Sib. Mat. Zh., 16, 189-190 (1975), 198 · Zbl 0304.46017
[28] Tyulenev, A. I., The problem of traces for Sobolev spaces with Muckenhoupt-type weights, Math. Notes. Math. Notes, Mat. Zametki, 94, 5, 720-732 (2013), Translation of · Zbl 1295.46026
[29] Tyulenev, A. I., Boundary values of functions in a Sobolev space with weight of Muckenhoupt class on some non-Lipschitz domains, Mat. Sb., 205, 8, 67-94 (2014) · Zbl 1321.46039
[30] Tyulenev, A. I., Description of traces of functions in the Sobolev space with a Muckenhoupt weight, Proc. Steklov Inst. Math.. Proc. Steklov Inst. Math., Tr. Mat. Inst. Steklova, 284, 1, 288-303 (2014), Translation of · Zbl 1320.46034
[31] Uspenskiĭ, S. V., Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova, 60, 282-303 (1961) · Zbl 0119.10103
[32] Uspenskiĭ, S. V.; Vasil′eva, E. N., Qualitative investigation of functions in the generalized Liouville-Sobolev function spaces \(L_p^l( E_n)\) at infinity, Tr. Mat. Inst. Steklova, 248, Issled. po Teor. Funkts. i Differ. Uravn., 285-293 (2005) · Zbl 1129.46029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.