×

Geometrical logarithmic capacitance. (English) Zbl 1436.31010

Summary: This paper is devoted to a novel and nontrivial exploration of eight aspects of the geometrical logarithmic capacitance (a very key notion in mathematical physics, quasiconformal geometry and variational calculus) through: (1) identifying with the reduced conformal module; (2) evaluating the minimal log-potential energy; (3) relating to both the volume-radius and the surface-radius; (4) linking with the \(n\)-harmonic radius and the log-capacity of the Kevin image of a compact surface; (5) finding the Minkowski inequality and the general variational formula for the log-capacity; (6) pinching the log-isocapacitary inequality from left and solving the left-prescribed problem for the normalized log-capacitary curvature measure; (7) pinching the log-isocapacitary inequality from right and handling the right-prescribed problem for the normalized log-capacitary curvature measure; (8) handling an overdetermination of the \(n\)-equilibrium potential of a given convex body via the log-capacitary concavity.

MSC:

31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J93 Quasilinear elliptic equations with mean curvature operator
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
Full Text: DOI

References:

[1] Adams, D. R., Choquet integrals in potential theory, Publ. Mat., 42, 3-66 (1998) · Zbl 0923.31006
[2] Aikawa, H.; Essén, M., Potential Theory - Selected Topics, Lecture Notes in Math., vol. 1633 (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0865.31001
[3] Anderson, G. D.; Vamanamurthy, M. K., The transfinite moduli of condensers in space, Tohoko Math. J., 40, 1-25 (1988) · Zbl 0627.31001
[4] Axler, S.; Bourdon, P.; Ramey, W., Harmonic Function Theory (2001), Springer-Verlag New York, Inc. · Zbl 0959.31001
[5] Babdle, C.; Flucher, M., Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equation \(\operatorname{\Delta} u = e^u\) and \(\operatorname{\Delta} u = u^{\frac{ n + 2}{ n - 2}} \), SIAM Rev., 38, 191-238 (1996) · Zbl 0857.35034
[6] Bagby, T., The modulus of a plane condenser, J. Math. Mech., 17, 315-329 (1967) · Zbl 0163.35204
[7] Baran, M.; Bialas-Cieź, L., Product property for capacities in \(\mathbb{C}^N\), Ann. Pol. Math., 106, 19-29 (2012) · Zbl 1254.32046
[8] Betsakos, D., Geometric versions of Schwarz’s lemma for quasiregular mappings, Proc. Am. Math. Soc., 139, 1397-1407 (2010) · Zbl 1217.30021
[9] Borell, C., Hitting probability of killed Brownian motion: a study on geometric regularity, Ann. Sci. Ec. Norm. Supér. Paris, 17, 451-467 (1984) · Zbl 0573.60067
[10] Cardaliaguet, P.; Tahraoui, R., On the strict concavity of the harmonic radius in dimension \(N \geq 3\), J. Math. Pures Appl., 81, 223-240 (2002) · Zbl 1027.31003
[11] Cheng, S.-Y.; Yau, S.-T., On the regularity of the solution of the n-dimensional Minkowski problem, Commun. Pure Appl. Math., 29, 495-516 (1976) · Zbl 0363.53030
[12] Cheng, T.; Yang, S., Extremal function for capacity and estimates of QED constants in \(\mathbb{R}^n\), Adv. Math., 306, 929-957 (2017) · Zbl 1359.31005
[13] Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5, 131-295 (1953-1954) · Zbl 0064.35101
[14] Colesanti, A.; Cuoghi, P., The Brunn-Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies, Potential Anal., 22, 289-304 (2005) · Zbl 1074.31007
[15] Colesanti, A.; Nyström, K.; Salani, P.; Xiao, J.; Yang, D.; Zhang, G., The Hadamard variational formula and the Minkowski problem for p-capacity, Adv. Math., 285, 1511-1588 (2015) · Zbl 1327.31024
[16] Dassios, G., On the harmonic radius and the capacity of an inverse ellipsoid, J. Math. Phys., 29, 835-836 (1988) · Zbl 0655.31003
[17] Doob, J. L., Classical Potential Theory and Its Probabilistic Counterpart, Classics in Math. Berlin (2001), Springer, Reprint of the 1984 edition · Zbl 0990.31001
[18] Duren, P.; Pfaltzgraff, J., Robin capacity and extremal length, J. Math. Anal. Appl., 179, 110-119 (1993) · Zbl 0797.31009
[19] Duren, P.; Pfaltzgraff, J.; Thurman, E., Physical interpretation and further properties of Robin capacity, Algebra Anal.. Algebra Anal., St. Petersburg Math. J., 9, 607-614 (1998) · Zbl 0896.30020
[20] Enciso, A.; Peralta-Salas, D., Symmetry for an overdetermined boundary problem in a punctured domain, Nonlinear Anal., 70, 1080-1086 (2009) · Zbl 1152.35523
[21] Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17, 228-249 (1923) · JFM 49.0047.01
[22] Flucher, M., Variational Problems With Concentration, PNLDE, vol. 36 (1999), Birkhäuser · Zbl 0940.35006
[23] Fraenkel, L. E., A lower bound for electrostatic capacity in the plane, Proc. R. Soc. Edinb. A, 88, 267-273 (1981) · Zbl 0466.31007
[24] Fraenkel, L. E., The capacity of slender toroidal sets in \(\mathbb{R}^n\), Arch. Ration. Mech. Anal., 118, 169-193 (1992) · Zbl 0755.31005
[25] Gehring, F. W., Rings and quasiconformal mappings in space, Trans. Am. Math. Soc., 103, 353-393 (1962) · Zbl 0113.05805
[26] Giannopoulos, A.; Koldobsky, A.; Valettas, P., Inequalities for the surface area of projections of convex bodies, Can. J. Math., 70, 804-823 (2018) · Zbl 1400.52003
[27] Goldenfeld, N., Lectures on Phase Transitions and the Renormalization Group (1992), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company New York
[28] Granlund, S.; Lindqvist, P.; Martio, O., Conformally invariant variational integrals, Trans. Am. Math. Soc., 277, 43-73 (1983) · Zbl 0518.30024
[29] Hansen, W.; Nadirashvili, N., Isoperimetric inequalities in potential theory, Potential Anal., 3, 1-14 (1994) · Zbl 0825.31003
[30] Heinonen, J.; Kilpeläinen, T.; Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations (2006), Dover Publications, Inc.: Dover Publications, Inc. Mineola, New York · Zbl 1115.31001
[31] Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1-61 (1998) · Zbl 0915.30018
[32] Hesse, J., p-extremal length and p-capacity equality, Ark. Mat., 13, 131-144 (1975) · Zbl 0302.31009
[33] Hopf, E., A remark on linear elliptic differential equations of second order, Proc. Am. Math. Soc., 3, 791-793 (1952) · Zbl 0048.07802
[34] Jerison, D., A Minkowski problem for electrostatic capacity, Acta Math., 176, 1-47 (1996) · Zbl 0880.35041
[35] Jerison, D., The direct method in the calculus of variations for convex bodies, Adv. Math., 122, 262-279 (1996) · Zbl 0920.35056
[36] Kichenassamy, S.; Veron, L., Singular solutions of the p-Laplace equation, Math. Ann., 275, 599-615 (1986) · Zbl 0592.35031
[37] Kolodziej, S., The logarithmic capacity in \(\mathbf{C}^n\), Ann. Pol. Math., 48, 253-267 (1988) · Zbl 0664.32014
[38] Kurata, H., Linear relations for p-harmonic functions, Discrete Appl. Math., 156, 103-109 (2008) · Zbl 1126.31004
[39] Landkof, N. S., Foundations of Modern Potential Theory (1972), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 0253.31001
[40] Lewis, J., Capacitary functions in convex rings, Arch. Ration. Mech. Anal., 66, 201-224 (1977) · Zbl 0393.46028
[41] Lewis, J., Applications of boundary Harnack inequalities for p harmonic functions and related topics, (C.I.M.E. Summer Course: Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. C.I.M.E. Summer Course: Regularity Estimates for Nonlinear Elliptic and Parabolic Problems, Cetraro (Cosenza) Italy, June 21-27 (2009)) · Zbl 1250.35002
[42] Lieb, E. H.; Loss, M., Analysis, GSM, vol. 14 (2001), Amer. Math. Soc. · Zbl 0966.26002
[43] Liesen, J.; Séte, O.; Nasser, M. M.S., Fast and accurate computation of the logarithmic capacity of compact sets, Comput. Methods Funct. Theory, 17, 689-713 (2017) · Zbl 1381.65026
[44] Lin, K.-C., Extremal functions for Moser’s inequality, Trans. Am. Math. Soc., 348, 2663-2671 (1996) · Zbl 0861.49001
[45] Lindqvist, P., A remark on the Kelvin transform for a quasilinear equation
[46] Loewner, C., On the conformal capacity in space, J. Math. Mech., 8, 411-414 (1959) · Zbl 0086.28203
[47] Martio, O.; Ryazanov, V.; Srebro, U.; Yakubov, E., Moduli in Modern Mapping Theory (2009), Springer · Zbl 1175.30020
[48] Mazýa, V., Sobolev Spaces With Applications to Elliptic Partial Differential Equations (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1217.46002
[49] Morgan, F., Manifolds with density, Not. Am. Math. Soc., 52, 853-858 (2005) · Zbl 1118.53022
[50] Morgan, F., Riemannian Geometry. A Beginner’s Guide (2009), A K Peters, Ltd. · Zbl 1234.53001
[51] Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large, Commun. Pure Appl. Math., 6, 337-394 (1953) · Zbl 0051.12402
[52] Osserman, R., Bonnesen-style isoperimetric inequalities, Am. Math. Mon., 86, 1-29 (1979) · Zbl 0404.52012
[53] Philippin, G. A.; Payne, L. E., On the conformal capacity problem, Symp. Math. (Cortona, 1988), XXX, 119-136 (1988) · Zbl 0714.35017
[54] Pogorelov, A. V., The Minkowski Multidimensional Problem, Scripta Series in Mathematics (1978), V.H. Winston & Sons: V.H. Winston & Sons Washington, D.C., Halsted Press [John Wiley & Sons], New York-Toronto-London · Zbl 0387.53023
[55] Pommerenke, C., Univalent Functions, Studia Mathematica, Band XXV (1975), Vandenhoeck & Ruprecht: Vandenhoeck & Ruprecht Göttingen, With a chapter on quadratic differentials by Gerd Jensen · Zbl 0188.38303
[56] Pólya, G., Estimating electrostatic capacity, Am. Math. Mon., 54, 201-206 (1947) · Zbl 0029.42102
[57] Pólya, G.; Szegö, G., Isoperimetric Inequalities in Mathematical Physics (1951), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0044.38301
[58] Pressley, A., Elementary Differential Geometry (2001), Springer-Verlag: Springer-Verlag London · Zbl 0959.53001
[59] Pyrih, P., Logarithmic capacity is not subadditive – a fine topology approach, Comment. Math. Univ. Carol., 33, 67-72 (1992) · Zbl 0764.31006
[60] Ramond, P., Field Theory: A Modern Primer (1981), Benjamins/Cummings: Benjamins/Cummings Reading, MA
[61] Renggli, H., An inequality for logarithmic capacities, Pac. J. Math., 11, 1, 313-314 (1961) · Zbl 0109.30101
[62] Saff, E. B., Logarithmic potential theory with applications to approximation theory, Surv. Approx. Theory, 5, 165-200 (2010) · Zbl 1285.30020
[63] Saff, E. B.; Totik, V., Logarithmic Potentials With External Fields (1997), Springer-Verlag · Zbl 0881.31001
[64] Salani, P., A characterization of balls through optimal concavity for potential functions, Proc. Am. Math. Soc., 143, 173-183 (2015) · Zbl 1310.35183
[65] Schiffer, M., Hadamard’s formula and variation of domain-functions, Am. J. Math., 68, 417-448 (1946) · Zbl 0060.23706
[66] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory (1993), Cambridge Univ. Press · Zbl 0798.52001
[67] Shlyk, V. A., The equality between p-capacity and p-modulus, Sib. Math. J., 34, 216-221 (1993) · Zbl 0810.31004
[68] Solynin, A. Y.; Zalgaller, V. A., An isoperimetric inequality for logarithmic capacity of polygons, Ann. of Math. (2), 159, 277-303 (2004) · Zbl 1060.31001
[69] Szegö, G., Bemerkungen zu einer Arbeit von Herrn M. Fekete: Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 21, 203-208 (1924) · JFM 50.0044.02
[70] Tolksdorf, P., On the Dirichlet problem for quasilinear elliptic equations in domains with conical boundary points, Commun. Partial Differ. Equ., 8, 773-817 (1983) · Zbl 0515.35024
[71] Tso, K. S., A direct method approach for the existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature, Math. Z., 209, 339-344 (1992) · Zbl 0735.53048
[72] Tsuji, M., Potential Theory in Modern Function Theory (1959), Maruzen Co., Ltd.: Maruzen Co., Ltd. Tokyo · Zbl 0087.28401
[73] Wang, W., N-capacity, N-harmonic radius and N-harmonic transplantation, J. Math. Anal. Appl., 327, 155-174 (2007) · Zbl 1107.31005
[74] Xiao, J., On the variational p-capacity problem in the plane, Commun. Pure Appl. Anal., 14, 959-968 (2015) · Zbl 1315.31001
[75] Xiao, J., Conformal modulus and its reduction via mean curvatures, J. Math. Anal. Appl., 439, 436-447 (2016) · Zbl 1338.31012
[76] Xiao, J., P-capacity vs surface-area, Adv. Math., 308, 1318-1336 (2017) · Zbl 1361.31008
[77] Xiao, J., Exploiting log-capacity in convex geometry, Asian J. Math., 22, 955-980 (2018) · Zbl 1402.31006
[78] Xiao, J., Prescribing capacitary curvature measures on planar convex domains, J. Geom. Anal. (2019)
[79] Yau, S.-T., Problem section, (Yau, S.-T., Seminar on Differential Geometry. Seminar on Differential Geometry, Ann. Math. Stud., vol. 102 (1982), Princeton University Press: Princeton University Press Princeton, N.J.), 669-706 · Zbl 0471.00020
[80] Ziemer, W. P., Extremal length and conformal capacity, Trans. Am. Math. Soc., 126, 460-473 (1967) · Zbl 0177.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.