×

On the removal of singularities of the Orlicz-Sobolev classes. (English. Russian original) Zbl 1369.30022

J. Math. Sci., New York 222, No. 6, 723-740 (2017); translation from Ukr. Mat. Visn. 13, No. 3, 324-349 (2016).
Summary: We study the local behavior of closed-open discrete mappings of the Orlicz-Sobolev classes in \(\mathbb{R}^n\); \(n\geq3\). It is proved that the indicated mappings have continuous extensions to an isolated boundary point \(x_0\) of a domain \(D\setminus\{x_0\}\), whenever its inner dilatation of order \(p\in(n-1,n]\) has FMO (finite mean oscillation) at this point, and, in addition, the limit sets of \(f\) at \(x_0\) and on \(D\) are disjoint. Another sufficient condition for the possibility of a continuous extension can be formulated as a condition of divergence of a certain integral.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
Full Text: DOI

References:

[1] T. Iwaniec and G. Martin, Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford, 2001. · Zbl 1045.30011
[2] O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Science + Business Media, New York, 2009. · Zbl 1175.30020
[3] O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. d’Anal. Math., 93, 215-236 (2004). · Zbl 1084.30021 · doi:10.1007/BF02789308
[4] V. Ya. Gutlyanskii, V. I. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach, New York, Springer, 2012. · Zbl 1248.30001 · doi:10.1007/978-1-4614-3191-6
[5] V. Ya. Gutlyanskii and A. Golberg, “On Lipschitz continuity of quasiconformal mappings in space,” J. d’ Anal. Math., 109, 233-251 (2009). · Zbl 1187.30026
[6] A. Golberg and R. Salimov, “Topological mappings of integrally bounded <Emphasis Type=”Italic“>p-moduli,”Ann. Univ. Buchar. Math. Ser., 3(LXI), No. 1, 49-66 (2012). · Zbl 1274.30091
[7] R. R. Salimov, “On ring <Emphasis Type=”Italic“>Q-mappings relative to a nonconformal modulus,” Dal’nevost. Mat. Zh., 14, No. 2, 257-269 (2014). · Zbl 1336.30033
[8] M. Vuorinen, “Exceptional sets and boundary behavior of quasiregular mappings in <Emphasis Type=”Italic“>n-space,” Ann. Acad. Sci. Fenn. Ser. A 1. Math. Dissert., 11, 1-44 (1976). · Zbl 0362.30024
[9] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “To the theory of the Orlicz-Sobolev classes,” Alg. Analiz, 25, No. 6, 50-102 (2013). · Zbl 1318.46022
[10] A. P. Calderón, “On the differentiability of absolutely continuous functions,” Riv. Math. Univ. Parma, 2, 203-213 (1951). · Zbl 0044.27901
[11] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966. · Zbl 0138.06002
[12] B. Fuglede, “Extremal length and functional completion,” Acta Math., 98, 171-219 (1957). · Zbl 0079.27703 · doi:10.1007/BF02404474
[13] F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353-393 (1962). · Zbl 0113.05805 · doi:10.1090/S0002-9947-1962-0139735-8
[14] S. Rickman, Quasiregular Mappings, Springer, Berlin, 1993. · Zbl 0816.30017 · doi:10.1007/978-3-642-78201-5
[15] W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc., 126, No. 3, 460-473 (1967). · Zbl 0177.34002 · doi:10.1090/S0002-9947-1967-0210891-0
[16] W. P. Ziemer, “Extremal length and <Emphasis Type=”Italic“>p-capacity,” Michigan Math. J., 16, 43-51 (1969). · Zbl 0172.38701 · doi:10.1307/mmj/1029000164
[17] V. A. Shlyk, “On the equality of a <Emphasis Type=”Italic“>p-capacitance and <Emphasis Type=”Italic“>p-modulus,” Sib. Mat. Zh., 34, No. 6, 216-221 (1993). · Zbl 0810.31004 · doi:10.1007/BF00973485
[18] H. Federer, Geometric Measure Theory, Springer, Berlin, 1996. · Zbl 0874.49001 · doi:10.1007/978-3-642-62010-2
[19] Yu. G. Reshetnyak, Spatial Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk, 1982. · Zbl 0487.30011
[20] D. Kovtonuyk and V. Ryazanov, “New modulus estimates in Orlicz-Sobolev classes,” Ann. Univ. Bucharest. Math. Ser., 5(LXIII), 131-135 (2014). · Zbl 1324.30063
[21] V. G. Maz’ya, Sobolev Spaces, Leningrad Univ., Leningrad, 1985 [in Russian]. · Zbl 0727.46017
[22] O. Martio and S. Rickman, Väisälä J., “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A1, 465, 1-13 (1970). · Zbl 0197.05702
[23] E. A. Sevost’yanov, “On some properties of generalized quasiisometries with unbounded characteristic,” Ukr. Mat. Zh., 63, No. 3, 385-398 (2011). · Zbl 1307.30055
[24] D. A. Kovtonyuk and V. I. Ryazanov, “To the theory of lower <Emphasis Type=”Italic“>Q-homeomorphisms,” Ukr. Mat. Vest., 5, No. 2, 159-184 (2008).
[25] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin, 1971. · Zbl 0221.30031 · doi:10.1007/BFb0061216
[26] O. Martio and U. Srebro, “Periodic quasimeromorphic mappings,” J. Analyse Math., 28, 20-40 (1975). · Zbl 0317.30025 · doi:10.1007/BF02786804
[27] T. V. Lomako, “On the extension of some generalizations of quasiconformal mappings to a boundary,” Ukr. Mat. Zh., 61, No. 10, 1329-1337 (2009). · Zbl 1224.30110 · doi:10.1007/s11253-010-0298-6
[28] S. Stoilow, Lecons sur les Principes Topologiques de la Théorie des Fonctions Analytiques, Gauthier-Villars, Paris, 1938. · JFM 64.0309.01
[29] A. Ignat’ev and V. Ryazanov, “A finite mean oscillation in the theory of mappings,” Ukr. Mat. Vest., 2, No. 3, 395-417 (2005). · Zbl 1155.30344
[30] V. I. Ryazanov and E. A. Sevost’yanov, “Equipotentially continuous classes of ring <Emphasis Type=”Italic“>Q-homeomorphisms,” Sib. Mat. Zh., 48, No. 6, 1361-1376 (2007). · Zbl 1164.30364 · doi:10.1007/s11202-007-0111-4
[31] R. R. Salimov, “On the estimate of a measure of the image of a ball,” Sib. Mat. Zh., 53, No. 4, 920-930 (2012). · Zbl 1279.30040 · doi:10.1134/S0037446612040155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.