×

Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. (English) Zbl 1437.74012

Summary: We consider non-stationary oscillations of an infinite string with time-varying tension. The string lies on the Winkler foundation with a point inhomogeneity (a concentrated spring of negative stiffness). In such a system with constant parameters (the string tension), under certain conditions a trapped mode of oscillation exists and is unique. Therefore, applying a non-stationary external excitation to this system can lead to the emergence of the string oscillations localized near the inhomogeneity. We provide an analytical description of non-stationary localized oscillations of the string with slowly time-varying tension using the asymptotic procedure based on successive application of two asymptotic methods, namely the method of stationary phase and the method of multiple scales. The obtained analytical results were verified by independent numerical calculations based on the finite difference method. The applicability of the analytical formulas was demonstrated for various types of external excitation and laws governing the varying tension. In particular, we have shown that in the case when the trapped mode frequency approaches zero, localized low-frequency oscillations with increasing amplitude precede the localized string buckling. The dependence of the amplitude of such oscillations on its frequency is more complicated in comparison with the case of a one-degree-of-freedom system with time-varying stiffness.

MSC:

74K05 Strings
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs

References:

[1] Ursell, F.: Trapping modes in the theory of surface waves. Math. Proc. Camb. Philos. Soc. 47(2), 347-358 (1951) · Zbl 0043.40704 · doi:10.1017/S0305004100026700
[2] Kaplunov, J.: The torsional oscillations of a rod on a deformable foundation under the action of a moving inertial load. Izvestiya Akademii Nauk SSSR, MTT (Mechanics of Solids) 6, 174-177 (1986). (in Russian)
[3] Abramian, A., Andreyev, V., Indeitsev, D.: The characteristics of the oscillations of dynamical systems with a load-bearing structure of infinite extent. Modelirovaniye v mekhanike 6(2), 3-12 (1992). (in Russian) · Zbl 0815.73028
[4] Kaplunov, J., Sorokin, S.: A simple example of a trapped mode in an unbounded waveguide. J. Acoust. Soc. Am. 97, 3898-3899 (1995) · doi:10.1121/1.412405
[5] Abramyan, A., Indeitsev, D.: Trapping modes in a membrane with an inhomogeneity. Acoust. Phys. 44, 371-376 (1998)
[6] Gavrilov, S.: The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mech. 70(4), 582-589 (2006) · Zbl 1126.70352 · doi:10.1016/j.jappmathmech.2006.09.009
[7] Gavrilov, S., Indeitsev, D.: The evolution of a trapped mode of oscillations in a “string on an elastic foundation - moving inertial inclusion” system. PMM J. Appl. Math. Mech. 66(5), 825-833 (2002) · Zbl 1094.74583 · doi:10.1016/S0021-8928(02)90013-4
[8] Alekseev, V., Indeitsev, D., Mochalova, Y.: Vibration of a flexible plate in contact with the free surface of a heavy liquid. Tech. Phys. 47(5), 529-534 (2002) · doi:10.1134/1.1479977
[9] McIver, P., McIver, M., Zhang, J.: Excitation of trapped water waves by the forced motion of structures. J. Fluid Mech. 494, 141-162 (2003) · Zbl 1077.76014 · doi:10.1017/S0022112003005949
[10] Indeitsev, D., Osipova, E.: Localization of nonlinear waves in elastic bodies with inclusions. Acoust. Phys. 50(4), 420-426 (2004) · doi:10.1134/1.1776219
[11] Porter, R.: Trapped waves in thin elastic plates. Wave Motion 45(1-2), 3-15 (2007) · Zbl 1231.74255 · doi:10.1016/j.wavemoti.2007.04.001
[12] Kaplunov, J., Nolde, E.: An example of a quasi-trapped mode in a weakly non-linear elastic waveguide. C. R. Méc. 336(7), 553-558 (2008) · doi:10.1016/j.crme.2008.04.005
[13] Motygin, O.: On trapping of surface water waves by cylindrical bodies in a channel. Wave Motion 45(7-8), 940-951 (2008) · Zbl 1231.76049 · doi:10.1016/j.wavemoti.2008.05.002
[14] Nazarov, S.: Sufficient conditions on the existence of trapped modes in problems of the linear theory of surface waves. J. Math. Sci. 167(5), 713-725 (2010) · Zbl 1288.35398 · doi:10.1007/s10958-010-9956-3
[15] Pagneux, V.; Craster, R. (ed.); Kaplunov, J. (ed.), Trapped modes and edge resonances in acoustics and elasticity, 181-223 (2013), Berlin · doi:10.1007/978-3-7091-1619-7_5
[16] Porter, R., Evans, D.: Trapped modes due to narrow cracks in thin simply-supported elastic plates. Wave Motion 51(3), 533-546 (2014) · Zbl 1459.74097 · doi:10.1016/j.wavemoti.2014.01.002
[17] Gavrilov, S., Mochalova, Y., Shishkina, E.: Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. In: Proceedings of the International Conference Days on Diffraction (DD), 2016, pp. 161-165. IEEE (2016). https://doi.org/10.1109/DD.2016.7756834
[18] Kaplunov, J., Rogerson, G., Tovstik, P.: Localized vibration in elastic structures with slowly varying thickness. Q. J. Mech. Appl. Math. 58(4), 645-664 (2005) · Zbl 1088.74027 · doi:10.1093/qjmam/hbi028
[19] Indeitsev, D., Kuznetsov, N., Motygin, O., Mochalova, Y.: Localization of Linear Waves. St. Petersburg University, St. Petersburg (2007). (in Russian)
[20] Indeitsev, D., Sergeev, A., Litvin, S.: Resonance vibrations of elastic waveguides with inertial inclusions. Tech. Phys. 45(8), 963-970 (2000) · doi:10.1134/1.1307003
[21] Indeitsev, D., Abramyan, A., Bessonov, N., Mochalova, Y., Semenov, B.: Motion of the exfoliation boundary during localization of wave processes. Dokl. Phys. 57(4), 179-182 (2012) · doi:10.1134/S1028335812040106
[22] Wang, C.: Vibration of a membrane strip with a segment of higher density: analysis of trapped modes. Meccanica 49(12), 2991-2996 (2014) · Zbl 1306.74028 · doi:10.1007/s11012-014-0034-7
[23] Indeitsev, D., Kuklin, T., Mochalova, Y.: Localization in a Bernoulli-Euler beam on an inhomogeneous elastic foundation. Vestn. St. Petersburg Univ. Math. 48(1), 41-48 (2015) · Zbl 1370.74090 · doi:10.3103/S1063454115010069
[24] Indeitsev, D., Gavrilov, S., Mochalova, Y., Shishkina, E.: Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Dokl. Phys. 61(12), 620-624 (2016) · doi:10.1134/S1028335816120065
[25] Gavrilov, S., Mochalova, Y., Shishkina, E.: Evolution of a trapped mode of oscillation in a string on the Winkler foundation with point inhomogeneity. In: Proceedings of the International Conference Days on Diffraction (DD), 2017, pp. 128-133. IEEE (2017). https://doi.org/10.1109/DD.2017.8168010
[26] Shishkina, E., Gavrilov, S., Mochalova, Y.: Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness. J. Sound Vib. 440C, 174-185 (2019) · doi:10.1016/j.jsv.2018.10.016
[27] Fedoruk, M.: The Saddle-Point Method. Nauka, Moscow (1977). (in Russian) · Zbl 0463.41020
[28] Nayfeh, A.: Introduction to Perturbation Techniques. Wiley, London (1993) · Zbl 0449.34001
[29] Nayfeh, A.: Perturbation Methods. Weily, London (1973) · Zbl 0265.35002
[30] Gao, Q., Zhang, J., Zhang, H., Zhong, W.: The exact solutions for a point mass moving along a stretched string on a Winkler foundation. Shock Vib. 2014, 136149 (2014)
[31] Luongo, A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25, 133-156 (2001) · Zbl 1021.74017 · doi:10.1023/A:1012954700751
[32] Abramyan, A., Vakulenko, S.: Oscillations of a beam with a time-varying mass. Nonlinear Dyn. 63(1-2), 135-147 (2011) · Zbl 1215.74031 · doi:10.1007/s11071-010-9791-6
[33] Abramian, A., van Horssen, W., Vakulenko, S.: On oscillations of a beam with a small rigidity and a time-varying mass. Nonlinear Dyn. 78(1), 449-459 (2014) · Zbl 1314.74032 · doi:10.1007/s11071-014-1451-9
[34] Abramian, A., van Horssen, W., Vakulenko, S.: Oscillations of a string on an elastic foundation with space and time-varying rigidity. Nonlinear Dyn. 88(1), 567-580 (2017) · Zbl 1373.74058 · doi:10.1007/s11071-016-3261-8
[35] Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971) · Zbl 0231.35002
[36] Gavrilov, S.: Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. J. Sound Vib. 222(3), 345-361 (1999) · Zbl 1235.74069 · doi:10.1006/jsvi.1998.2051
[37] Feschenko, S., Shkil, N., Nikolenko, L.: Asymptotic Methods in Theory of Linear Differential Equations. North-Holland, Amsterdam (1967) · Zbl 0153.40501
[38] Donninger, R., Schlag, W.: Numerical study of the blowup/global existence dichotomy for the focusing cubic nonlinear Klein-Gordon equation. Nonlinearity 24(9), 2547-2562 (2011) · Zbl 1244.35018 · doi:10.1088/0951-7715/24/9/009
[39] Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28(2), 271-278 (1978) · Zbl 0387.65076 · doi:10.1016/0021-9991(78)90038-4
[40] Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations, vol. 88. SIAM, Philadelphia (2004) · Zbl 1071.65118
[41] Trangenstein, J.: Numerical Solution of Hyperbolic Partial Differential Equations. Cambridge University Press, Cambridge (2009) · Zbl 1187.65088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.