×

Spreading sets and one-dimensional symmetry for reaction-diffusion equations. (English) Zbl 1495.35101

Summary: We consider reaction-diffusion equations \(\partial_tu = \Delta u + f(u)\) in the whole space \(\mathbb{R}^N\) and we are interested in the large-time dynamics of solutions ranging in the interval \([0, 1]\), with general unbounded initial support. Under the hypothesis of the existence of a traveling front connecting 0 and 1 with a positive speed, we discuss the existence of spreading speeds and spreading sets, which describe the large-time global shape of the level sets of the solutions. The spreading speed in any direction is expressed as a Freidlin-Gärtner type formula. This formula holds under general assumptions on the reaction and for solutions emanating from initial conditions with general unbounded support, whereas most of earlier results were concerned with more specific reactions and compactly supported or almost-planar initial conditions. We then investigate the local properties of the level sets at large time. Some flattening properties of the level sets of the solutions, if initially supported on subgraphs, will be presented. We also investigate the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP equations, we state some asymptotic local one-dimensional and monotonicity symmetry properties for the elements of the \(\Omega\)-limit set of the solutions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. Lastly, we present some logarithmic-in-time estimates of the lag of the position of the solutions with respect to that of a planar front with minimal speed, for initial conditions which are supported on subgraphs with logarithmic growth at infinity. Some related conjectures and open problems are also listed.

MSC:

35K57 Reaction-diffusion equations
35C07 Traveling wave solutions
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] M. Alfaro and T. Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Netw. Heterog. Media, 11:369-393, 2016. · Zbl 1346.35104
[2] D. G. Aronson and H. F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 30:33-76, 1978. · Zbl 0407.92014
[3] G. Barles, L. C. Evans, and P. E. Souganidis. Wavefront propagation for reaction-diffusion systems of partial diffusion equations. Duke Math. J., 61:835-859, 1990. · Zbl 0749.35015
[4] H. Berestycki and F. Hamel. Front propagation in periodic excitable media. Comm. Pure Appl. Math., 55:949-1032, 2002. · Zbl 1024.37054
[5] H. Berestycki and F. Hamel. Generalized travelling waves for reaction-diffusion equations. In Perspectives in nonlinear partial differential equations, volume 446 of Contemp. Math., pages 101-123, Amer. Math. Soc., Providence, RI, 2007. · Zbl 1200.35169
[6] H. Berestycki, F. Hamel, and G. Nadin. Asymptotic spreading in heterogeneous diffusive media. J. Funct. Anal., 255:2146-2189, 2008. · Zbl 1234.35033
[7] H. Berestycki, F. Hamel, and N. Nadirashvili. The speed of propagation for KPP type problems. I. Periodic framework. J. Europ. Math. Soc., 7:173-213, 2005. · Zbl 1142.35464
[8] H. Berestycki and G. Nadin. Asymptotic spreading for general heterogeneous Fisher-KPP type equations. Memoirs Amer. Math. Soc., forthcoming. · Zbl 1282.35191
[9] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves, volume 44 of Memoirs Amer. Math. Soc., 1983. · Zbl 0517.60083
[10] H. J. Brascamp and E. H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., 22:366-389, 1976. · Zbl 0334.26009
[11] E. De Giorgi. Convergence problems for functionals and operators. In Proc. International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pages 131-188. Pitagora, Bologna, 1979. · Zbl 0405.49001
[12] Y. Du and H. Matano. Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Europ. Math. Soc., 12:279-312, 2010. · Zbl 1207.35061
[13] Y. Du and H. Matano. Radial terrace solutions and propagation profile of multistable reaction-diffusion equations over \(, 2017\).
[14] Y. Du and P. Poláčik. Locally uniform convergence to an equilibrium for nonlinear parabolic equations on \(\). Indiana Univ. Math. J., 64:787-824, 2015. · Zbl 1336.35207
[15] A. Ducrot. On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly supported initial data. Nonlinearity, 28:1043-1076, 2015. · Zbl 1323.35080
[16] A. Ducrot, T. Giletti, and H. Matano. Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations. Trans. Amer. Math. Soc., 366:5541-5566, 2014. · Zbl 1302.35209
[17] L. C. Evans and P. E. Souganidis. A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J., 38:141-172, 1989. · Zbl 0692.35014
[18] P. C. Fife and J. B. McLeod. The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal., 65:335-361, 1977. · Zbl 0361.35035
[19] R.A. Fisher. The advance of advantageous genes. Ann. Eugenics, 7:335-369, 1937. · JFM 63.1111.04
[20] M. Freidlin and J. Gärtner. On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl., 20:1282-1286, 1979. · Zbl 0447.60060
[21] J. Gärtner. Location of wave fronts for the multi-dimensional KPP equation and Brownian first exit densities. Math. Nachr., 105:317-351, 1982. · Zbl 0501.60083
[22] T. Giletti and L. Rossi. Pulsating solutions for multidimensional bistable and multistable equations. Math. Ann., 378:1555-1611, 2020. · Zbl 1450.35107
[23] H. Guo. Propagating speeds of bistable transition fronts in spatially periodic media. Calc. Var. Part. Diff. Equations, 57:47, 2018. · Zbl 1403.35038
[24] F. Hamel, R. Monneau, and J.-M. Roquejoffre. Existence and qualitative properties of multidimensional conical bistable fronts. Disc. Cont. Dyn. Syst. A, 13:1069-1096, 2005. · Zbl 1097.35078
[25] F. Hamel, R. Monneau, and J.-M. Roquejoffre. Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Disc. Cont. Dyn. Syst. A, 14:75-92, 2006. · Zbl 1194.35151
[26] F. Hamel, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Heterog. Media, 8:275-289, 2013. · Zbl 1275.35067
[27] F. Hamel and L. Rossi. Spreading speeds and spreading sets of reaction-diffusion equations. Preprint.
[28] F. Hamel and L. Rossi. Asymptotic one-dimensional symmetry for the Fisher-KPP equation. Preprint. · Zbl 1362.35157
[29] F. Hamel and L. Rossi. Flattening and logarithmic lag of level sets in reaction-diffusion equations. In preparation.
[30] K. Ishige and P. Salani. Parabolic power concavity and parabolic boundary value problems. Math. Ann. 358:1091-1117, 2014. · Zbl 1325.35071
[31] K. Ishige, P. Salani, and A. Takatsu. To logconcavity and beyond. Commun. Contemp. Math. 22: article no. 1950009 (17 pages), 2020. · Zbl 1434.35014
[32] C. K. R. T. Jones. Spherically symmetric solutions of a reaction-diffusion equation. J. Diff. Equations, 49:142-169, 1983. · Zbl 0523.35059
[33] A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou, Sér. Intern. A, 1:1-26, 1937. · Zbl 0018.32106
[34] K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Diff. Equations, 59:44-70, 1985. · Zbl 0584.35091
[35] M. A. Lewis and P. Kareiva. Allee dynamics and the spread of invading organisms. Theo. Pop. Biol., 43:141-158, 1993. · Zbl 0769.92025
[36] X. Liang and H. Matano. Maximizing the spreading speed of KPP fronts in two-dimensional stratified media. Proc. London Math. Soc., 109:1137-1174, 2014. · Zbl 1319.35089
[37] H. Matano and M. Nara. Large time behavior of disturbed planar fronts in the Allen-Cahn equation. J. Diff. Equations, 251:3522-3557, 2011. · Zbl 1252.35050
[38] H. Matano, M. Nara, and M. Taniguchi. Stability of planar waves in the Allen-Cahn equation. Comm. Part. Diff. Equations, 34:976-1002, 2009. · Zbl 1191.35053
[39] H. Matano and P. Poláčik. Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part I: A general quasiconvergence theorem and its consequences. Comm. Part. Diff. Equations, 41:785-811, 2016. · Zbl 1345.35052
[40] H. Matano and P. Poláčik. Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part II: Generic nonlinearities. Comm. Part. Diff. Equations, 45:483-524, 2020. · Zbl 1439.35200
[41] C. B. Muratov and X. Zhong. Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations. Nonlin. Diff. Equations Appl., 20:1519-1552, 2013. · Zbl 1433.35173
[42] C. B. Muratov and X. Zhong. Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations. Disc. Cont. Dyn. Syst. A, 37:915-944, 2017. · Zbl 1364.35145
[43] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations. J. Diff. Equations, 213:204-233, 2005. · Zbl 1159.35378
[44] J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. Convergence to a single wave in the Fisher-KPP equation. Chinese Ann. Math. Ser. B (special issue in honour of H. Brezis), 38:629-646, 2017. · Zbl 1365.35074
[45] P. Poláčik. Convergence and quasiconvergence properties of solutions of parabolic equations on the real line: an overview. In: Patterns of Dynamics, volume 205 of Springer Proc. Math. Stat., pages 172-183, Springer, 2017.
[46] P. Poláčik. Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations. SIAM J. Math. Anal., 49:3716-3740, 2017. · Zbl 1516.35089
[47] P. Poláčik. Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on \(\). Mem. Amer. Math. Soc., 264(1278):v+87, 2020. · Zbl 1450.35002
[48] J.-M. Roquejoffre, L. Rossi, and V. Roussier-Michon. Sharp large time behaviour in \(\)-dimensional Fisher-KPP equations. Disc. Cont. Dyn. Syst. A, 39:7265-7290, 2019. · Zbl 1425.35102
[49] J.-M. Roquejoffre and V. Roussier-Michon. Nontrivial large-time behaviour in bistable reaction-diffusion equations. Ann. Mat. Pura Appl., 188:207-233, 2009. · Zbl 1178.35074
[50] J.-M. Roquejoffre and V. Roussier-Michon. Nontrivial dynamics beyond the logarithmic shift in two-dimensional Fisher-KPP equations. Nonlinearity, 31:3284-3307, 2018. · Zbl 1393.35103
[51] L. Rossi. The Freidlin-Gärtner formula for general reaction terms. Adv. Math., 317:267-298, 2017. · Zbl 1435.35199
[52] L. Rossi. Symmetrization and anti-symmetrization in reaction-diffusion equations. Proc. Amer. Math. Soc., 145:2527-2537, 2017. · Zbl 1386.35140
[53] V. Roussier. Stability of radially symmetric travelling waves in reaction-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 21:341-379, 2004. · Zbl 1066.35018
[54] N. Shigesada, K. Kawasaki, and E. Teramoto. Traveling periodic waves in heterogeneous environments. Theor. Pop. Bio., 30:143-160, 1986. · Zbl 0591.92026
[55] K. Uchiyama. The behavior of solutions of some semilinear diffusion equation for large time. J. Math. Kyoto Univ., 18:453-508, 1978. · Zbl 0408.35053
[56] K. Uchiyama. Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients. Arch. Ration. Mech. Anal., 90:291-311, 1985. · Zbl 0618.35058
[57] H. F. Weinberger. On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol., 45:511-548, 2002. · Zbl 1058.92036
[58] X. Xin. Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity. Indiana Univ. Math. J., 40:985-1008, 1991. · Zbl 0727.35070
[59] J. Xin. Analysis and modeling of front propagation in heterogeneous media. SIAM Review, 42:161-230, 2000. · Zbl 0951.35060
[60] A. Zlatoš. Sharp transition between extinction and propagation of reaction. J. Amer. Math. Soc., 19:251-263, 2006. · Zbl 1081.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.