×

Output feedback sliding-mode control based on dynamic-gain observer for non-minimum phase systems. (English) Zbl 1501.93063

Summary: This paper considers the output feedback sliding-mode control for an uncertain linear system with unstable zeros. Based on a frequency shaping design, a dynamic-gain observer is used for state estimation of an uncertain system. This paper confirms that (1) state estimation is globally stable in a practical sense, (2) the resultant error can be arbitrarily small with respect to the system uncertainties, and (3) the proposed sliding-mode control can drive the uncertain system state into an arbitrarily small residual set around the origin, such that the size of residual set is controlled by the filter design. Moreover, the proposed control design is inherently robust to measurement noise; the effect of measurement noise can effectively be attenuated without any additional work.

MSC:

93B52 Feedback control
93B12 Variable structure systems
93B53 Observers
93C41 Control/observation systems with incomplete information
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Utkin, V.; Guldner, J.; Shi, J., Sliding Mode Control in Electro-Mechanical Systems (2017), CRC Press
[2] Zak, S. H.; Hui, S., On variable structure output feedback controllers for uncertain dynamic systems, IEEE Trans. Automat. Control, 38, 10, 1509-1512 (1993) · Zbl 0790.93027
[3] Kwan, C., Further results on variable output feedback controllers, IEEE Trans. Automat. Control, 46, 9, 1505-1508 (2001) · Zbl 1004.93007
[4] Zhang, J.; Xia, Y., Design of static output feedback sliding mode control for uncertain linear systems, IEEE Trans. Ind. Electron., 57, 6, 2161-2170 (2010)
[5] Edwards, C.; Akoachere, A.; Spurgeon, S. K., Sliding-mode output feedback controller design using linear matrix inequalities, IEEE Trans. Automat. Control, 46, 1, 115-119 (2001) · Zbl 1056.93638
[6] Vidal, P. V.; Nunes, E. V.; Hsu, L., Output-feedback multivariable global variable gain super-twisting algorithm, IEEE Trans. Automat. Control, 62, 6, 2999-3005 (2016) · Zbl 1369.93266
[7] Zhang, J.; Shi, D.; Xia, Y., Design of sliding mode output feedback controllers via dynamic sliding surface, Automatica, 124, 109310 (2021) · Zbl 1461.93085
[8] Xu, J.; Fridman, E.; Fridman, L.; Niu, Y., Static sliding mode control of systems with arbitrary relative degree by using artificial delay, IEEE Trans. Automat. Control, 65, 12, 5464-5471 (2020) · Zbl 1536.93140
[9] Zak, S. H.; Hui, S., Output feedback variable structure controllers and state estimators for uncertain/nonlinear dynamic systems, IEE Proceedings-D, 140, 1, 41-50 (1993) · Zbl 0772.93016
[10] Walcott, B. L.; Zak, S. H., Combined observer-controller synthesis for uncertain dynamical systems with applications, IEEE Trans. Syst. Man Cybern., 18, 1, 88-104 (1988) · Zbl 0652.93019
[11] Floquet, T.; Edwards, C.; Spurgeon, S. K., On sliding mode observers for systems with unknown inputs, Int. J. Adapt. Contr. Signal Process., 21, 638-656 (2007) · Zbl 1128.93008
[12] Kalsi, K.; Lian, J.; Hui, S.; Zak, S. H., Sliding-mode observers for systems with unknown inputs: a high-gain approach, Automatica, 46, 347-353 (2010) · Zbl 1205.93028
[13] Fridman, L.; Levant, A.; Davila, J., Observation of linear systems with unknown inputs via high-order sliding-modes, Int. J. Syst. Sci., 38, 10, 773-791 (2007) · Zbl 1128.93312
[14] Khalil, H. K.; Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE Trans. Autom. Control, 38, 9, 1412-1415 (1993) · Zbl 0787.93079
[15] Oh, S.; Khalil, H. K., Nonlinear output-feedback tracking using high-gain observer and variable structure control, Automatica, 33, 10, 1845-1856 (1997) · Zbl 0890.93049
[16] Levant, A., Higher-order sliding modes, differentiation, and output-feedback control, Int. J. Control, 76, 9, 924-941 (2003) · Zbl 1049.93014
[17] Floquet, T.; Spurgeon, S. K.; Edwards, C., An output feedback sliding mode control strategy for MIMO systems of arbitrary relative degree, Int. J. Robust Nonlinear Control, 21, 119-133 (2011) · Zbl 1213.93029
[18] Angulo, M. T.; Fridman, L.; Levant, A., Output-feedback finite-time stabilization of disturbed LTI systems, Automatica, 48, 4, 606-611 (2012) · Zbl 1238.93080
[19] Shi, S.; Xu, S.; Zhang, B.; Ma, Q.; Zhang, Z., Global second-order sliding mode control for nonlinear uncertain systems, Int. J. Robust Nonlinear Control, 29, 1, 224-237 (2019) · Zbl 1411.93048
[20] Levant, A.; Shustin, B., Quasi-continuous MIMO sliding-mode control, IEEE Trans. Automat. Control, 63, 9, 3068-3074 (2018) · Zbl 1423.93077
[21] Kürkçü, B.; Kasnakoğlu, C.; Efe, M.Ö., Disturbance/uncertainty estimator based integral sliding-mode control, IEEE Trans. Automat. Control, 63, 11, 3940-3947 (2018) · Zbl 1423.93076
[22] Ovalle, L.; Rios, H.; Llama, M.; Fridman, L., Continuous sliding-mode output-feedback control for stabilization of a class of underactuated systems, IEEE Trans. Automat. Control (2021)
[23] Narendra, K. S.; Annaswamy, A. M., Stable Adaptive Systems (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0758.93039
[24] Isidori, A., Nonlinear Control Systems (1989), New York, Springer-Verlag: New York, Springer-Verlag New York
[25] Cunha, J. P.V. S.; Costa, R. R.; Lizarralde, F.; Hsu, L., Peaking free variable structure control of uncertain linear systems based on a high-gain observer, Automatica, 45, 5, 1156-1164 (2009) · Zbl 1162.93325
[26] Nunes, E. V.L.; Peixoto, A. J.; Oliveira, T. R.; Hsu, L., Global exact tracking for uncertain MIMO linear systems by output feedabck sliding mode control, J. Franklin Inst., 351, 4, 2015-2032 (2014) · Zbl 1372.93067
[27] Nunes, E. V.L.; Hsu, L.; Lizarralde, F., Global exact tracking for uncertain systems using output feedback sliding mode control, IEEE Trans. Automat. Control, 54, 5, 1141-1147 (2009) · Zbl 1367.93125
[28] Oliveira, T. R.; Estrada, A.; Fridman, L. M., Global and exact HOSM differentiator with dynamic gains for output-feedback sliding mode control, Automatica, 81, 156-163 (2017) · Zbl 1372.93068
[29] Isidori, A., A tool for semi-global stabilization of uncertain non-minimum-phase nonlinear systems via output feedback, IEEE Trans. Automat. Control, 45, 10, 1817-1827 (2000) · Zbl 0990.93115
[30] Shkolnikov, I. A.; Shtessel, Y. B., Tracking in a class of nonminimum-phase systems with nonlinear internal dynamics via sliding mode control using method of system center, Automatica, 38, 5, 837-842 (2002) · Zbl 1001.93008
[31] Yan, X.; Edwards, C.; Spurgeon, S., Output feedback sliding mode control for non-minimum phase systems with non-linear disturbances, Int. J. Control, 77, 15, 1353-1361 (2004) · Zbl 1059.93026
[32] Chen, M.-S.; Chen, C.-C., \(H_\infty\) optimal design of robust observer against disturbances, Int. J. Control, 87, 6, 1208-1215 (2014) · Zbl 1291.93105
[33] Draženović, B., The invariance conditions in variable structure systems, Automatica, 5, 3, 287-295 (1969) · Zbl 0182.48302
[34] Dorf, R. C.; Bishop, R. H., Modern Control Systems (2017), Pearson Prentice Hall
[35] Vidyasagar, M., Nonlinear Systems Analysis (2002), Siam · Zbl 1006.93001
[36] Khalil, H. K., Nonlinear Systems (2002), Prentice-Hall: Prentice-Hall Upper Saddle River, New Jersey · Zbl 1003.34002
[37] Chen, C.-T., Linear System Theory and Design (1998), Oxford University Press, Inc.
[38] Maciejowski, J. M., Multivariable Feedback Design (1989), Addison-Wesley: Addison-Wesley Wokingham, England · Zbl 0691.93001
[39] Zhou, K.; Doyle, J. C., Essentials of robust control (1998), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[40] Doyle, J. C.; Francis, B. A.; Tannenbaum, A. R., Feedback control theory (2013), Courier Corporation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.