×

On the inverse eigenvalue problem for irreducible doubly stochastic matrices of small orders. (English) Zbl 1474.15087

Summary: The inverse eigenvalue problem is a classical and difficult problem in matrix theory. In the case of real spectrum, we first present some sufficient conditions of a real \(r\)-tuple (for \(r = 2\); 3; 4; 5) to be realized by a symmetric stochastic matrix. Part of these conditions is also extended to the complex case in the case of complex spectrum where the realization matrix may not necessarily be symmetry. The main approach throughout the paper in our discussion is the specific construction of realization matrices and the recursion when the targeted \(r\)-tuple is updated to a \((r + 1)\)-tuple.

MSC:

15B51 Stochastic matrices
15A18 Eigenvalues, singular values, and eigenvectors
15A29 Inverse problems in linear algebra

References:

[1] Borobia, A., On the nonnegative eigenvalue problem, Linear Algebra and Its Applications, 223/224, 131-140 (1995) · Zbl 0831.15014 · doi:10.1016/0024-3795(94)00343-C
[2] Fang, M., A note on the inverse eigenvalue problem for symmetric doubly stochastic matrices, Linear Algebra and Its Applications, 432, 11, 2925-2927 (2010) · Zbl 1193.15009 · doi:10.1016/j.laa.2009.12.032
[3] Hwang, S.-G.; Pyo, S.-S., The inverse eigenvalue problem for symmetric doubly stochastic matrices, Linear Algebra and Its Applications, 379, 77-83 (2004) · Zbl 1040.15010 · doi:10.1016/S0024-3795(03)00366-5
[4] Kaddoura, I.; Mourad, B., On a conjecture concerning the inverse eigenvalue problem of \(4 \times 4\) symmetric doubly stochastic matrices, International Mathematical Forum, 31, 3, 1513-1519 (2008) · Zbl 1166.15004
[5] Laffey, T. J.; Meehan, E., A characterization of trace zero nonnegative \(5 \times 5\) matrices, Linear Algebra and Its Applications, 302/303, 295-302 (1999) · Zbl 0946.15008 · doi:10.1016/S0024-3795(99)00099-3
[6] Loewy, R.; London, D., A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra, 6, 1, 83-90 (1978) · Zbl 0376.15006 · doi:10.1080/03081087808817226
[7] Mourad, B., On a spectral property of doubly stochastic matrices and its application to their inverse eigenvalue problem, Linear Algebra and Its Applications, 436, 9, 3400-3412 (2012) · Zbl 1247.15030 · doi:10.1016/j.laa.2011.11.034
[8] Nazari, A. M.; Sherafat, F., On the inverse eigenvalue problem for nonnegative matrices of order two to five, Linear Algebra and Its Applications, 436, 7, 1771-1790 (2012) · Zbl 1241.15008 · doi:10.1016/j.laa.2011.12.023
[9] Perfect, H.; Mirsky, L., Spectral properties of doubly-stochastic matrices, Monatshefte für Mathematik, 69, 35-57 (1965) · Zbl 0142.00302
[10] Reams, R., An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra, 41, 4, 367-375 (1996) · Zbl 0887.15015 · doi:10.1080/03081089608818485
[11] Rojo, O.; Soto, R. L., Existence and construction of nonnegative matrices with complex spectrum, Linear Algebra and Its Applications, 368, 53-69 (2003) · Zbl 1031.15017 · doi:10.1016/S0024-3795(02)00650-X
[12] Torre-Mayo, J.; Abril-Raymundo, M. R.; Alarcia-Estévez, E.; Marijuán, C.; Pisonero, M., The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs, Linear Algebra and Its Applications, 426, 2-3, 729-773 (2007) · Zbl 1136.15007 · doi:10.1016/j.laa.2007.06.014
[13] Yang, S.; Li, X., Inverse eigenvalue problems of \(4 \times 4\) irreducible nonnegative matrices, Advances in Matrix Theory and Applications. Proceedings of the 8th International Conference on Matrix theory and Applications, I (2008), World Academic Union
[14] Yang, S.; Xu, C., Row stochastic inverse eigenvalue problem, Journal of Inequalities and Applications, 2011 (2011) · Zbl 1269.15008 · doi:10.1186/1029-242X-2011-24
[15] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0576.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.